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Abstract

Pay-as-bid (or discriminatory or multiple-price) auctions are frequently used to
sell homogenous goods such as treasury securities and commodities. We prove the
uniqueness of their pure-strategy Bayesian Nash equilibrium and establish a tractable
representation of equilibrium bids for symmetrically-informed bidders. Building on
these results we analyze the optimal design of pay-as-bid auctions, as well as uniform-
price (or single-price) auctions, the main alternative auction format. We show that
supply transparency and full disclosure are optimal in pay as bid, though not necessarily
in uniform price; pay as bid is revenue dominant and might be welfare dominant; and
we provide an explanation for the revenue equivalence observed in empirical work.

First draft: 2018. Section 4 subsumes Pycia and Woodward "Pay-As-Bid: Selling Divisible Goods"
(2014). We would like to thank Pär Holmberg as well as John Asker, Susan Athey, Lawrence Ausubel, Gary
Biglaiser, Sushil Bikhchandani, Simon Board, Ben Brooks, Eddie Dekel, Jeffrey Ely, Christian Ewerhart,
Natalia Fabra, Amanda Friedenberg, Rod Garratt, Hugo Hopenhayn, Ali Hortaçsu, Maxim Ivanov, Emir
Kamenica, Jakub Kastl, Paul Klemperer, Shengwu Li, Albert Ma, Daniel Marszalec, David McAdams,
Debasis Mishra, John Moore, Piotr Mucha, Ichiro Obara, Krzysztof Oleszkiewicz, Marco Pagnozzi, Andrea
Pratt, Phil Reny, Jozsef Sakovics, Ali Shourideh, Guofu Tan, Ina Taneva, Alex Teytelboym, Xavier Vives,
Pierre-Olivier Weill, Simon Wilkie, Milena Wittwer, Andrew Yates, Hisayuki Yoshimoto, and audiences
at UCLA, USC, SWET, ISMP, Econometric Society North American Summer Meetings, EC’16, the Lund
Market Design Conference, U Edinburgh, U Zurich, Caltech, Carnegie Mellon/U Pittsburgh, SET Seminars
in Economic Theory, Econometric Society European Winter Meetings, Stanford Market Design, Swiss Theory
Day, EC’21, Michigan State, Oxford, Stanford, ESSET’22, U Chicago, U Naples, and VfS’24 Bonn for their
comments. Pycia gratefully acknowledges the support of the UCLA Department of Economics. This project
has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation program grant agreement No 866376.

∗University of Zurich; marek.pycia@econ.uzh.ch
†Apple Inc.; kyle.woodward@apple.com

1



1 Introduction

Each year, securities and commodities worth trillions of dollars are allocated through multi-
unit auctions. Pay as bid is one of two main auction formats for these sales, the other format
being uniform price. Pay as bid is often used to sell treasury securities and to distribute
electricity generation. It is also used in government operations such as large-scale asset
purchases in the U.S. (quantitative easing), and it is implicitly run in financial markets
when limit orders are followed by a market order.1

Despite their economic importance, relatively little is known about equilibrium behavior
in pay-as-bid auctions. Accordingly, little is known about the design problem faced by
the pay-as-bid auctioneer: for instance, what is the optimal reserve price, and how does
transparency about supply affect the seller’s revenue? Furthermore, what explains the rough
revenue equivalence of pay-as-bid and uniform-price auctions found in empirical work?2

This paper addresses these open questions in environments in which the bidders are
symmetrically informed, an assumption that is approximately satisfied in many multi-unit
auction environments.3 For example, the value of a treasury security can be inferred from
the prices of its close substitutes and from the forward contracts on the current issue traded
ahead of the auction. The U.K. Debt Management Office highlights this feature of the
informational environment in which it sells British gilt-edged securities, noting in its guide
that:

“There are often similar gilts already in the market to allow ease of pricing [...]
This suggests that bidders are not significantly deterred from participation by
not knowing what the rest of the market’s valuation of the gilts on offer is” [UK
DMO, 2012].

In empirical analyses, Hortaçsu, Kastl, and Zhang [2018] argue that bidders in U.S. Treasury
auctions of short-term securities are nearly symmetrically informed, Armantier and Lafhel

1Pay-as-bid auctions are also referred to as discriminatory, or multiple-price auctions. OECD [2023] finds
that 25 of 37 countries surveyed allocate securities via pay-as-bid auctions; Brenner, Galai, and Sade [2009]
find that 33 of 48 countries surveyed use pay as bid. Most of the remaining markets are cleared by uniform-
price auction, also known as single price. Among G7 and founding BRICS countries, France, Germany,
and India use pay as bid; Canada and the U.K. primarily use pay as bid; Brazil, China, Italy, and Japan
use both; and South Africa and the U.S. use uniform price (OECD, 2023; Allen et al., 2024; Dhutia, 2024;
U.K. DMO, 2024). Del Río [2017] finds that 27 of 31 markets surveyed distribute electricity generation via
pay-as-bid auction (see also Maurer and Barroso [2011]). For financial markets, see, e.g., Glosten [1994].

2Pay-as-bid auction equilibria have been constructed in parameterized environments; see our discussion
below. The empirical literature on multi-unit auctions provides no definitive result on which auction format
raises more revenue; Hortaçsu, Kastl, and Zhang [2018] posit that this is potentially because bidders retain
little surplus.

3Our main results are robust to the presence of small informational asymmetries, see our Conclusion for
a discussion.
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[2009] argue that bidders in Bank of Canada auctions are essentially symmetric, and Hattori
and Takahashi [2022] argue the same for bidders for Japanese government bonds.4 While our
assumptions are borne out in some important multi-unit auctions, they are not satisfied in
others: for example, Armantier and Sbaï [2009] argue that bidders in French debt auctions
are asymmetrically informed, and Cole, Neuhann, and Ordonez [2022] argue that in Mexican
treasury auctions some bidders are informed (and have virtually identical information) while
other bidders are uninformed.

Although we assume bidders have symmetric information, our results allow any informa-
tional asymmetry between the seller and the bidders. The difference between the seller’s and
the bidders’ information is typical of the problem we study because the seller designs the
auction before—usually substantially before—the bidders submit their bids; the seller may
also want to set a single design for multiple auctions. We allow for uncertainty of the total
supply available for auction as exogenous supply uncertainty is a feature of some securities
auctions, e.g. in the United States [TreasuryDirect, 2022] and Japan [Hattori and Takahashi,
2022].5 We allow an arbitrary number of bidders and general demands, and thus provide
a substantively more general treatment than previous analyses, which relied on either large
markets or strong parametric assumptions (cf. Swinkels [2001], Ausubel et al. [2014], and
the discussion below).

A starting point for our analysis of equilibria is Theorem 1, which determines the lowest
equilibrium clearing price. This price bound and our subsequent design insights are valid
whether or not we allow mixed strategy-equilibria (cf. Appendix A), but our theory of
equilibrium bidding in pay-as-bid auctions focuses on pure-strategy equilibria. We prove that
pure-strategy equilibrium is unique (Theorem 2), in contrast with the substantial equilibrium
multiplicity present in uniform-price auctions [Wilson, 1979, Klemperer and Meyer, 1989,
Wang and Zender, 2002].6 In this unique equilibrium, each bidder responds to stochastic

4In addition, our result that in absence of substantive uncertainty bids in the pay-as-bid auction are
approximately flat, provides a test of the symmetric information assumption. Another natural test of the
symmetry assumption is the difference between auction price and the subsequent secondary clearing price.
Bid flatness and small primary- and secondary-clearing price differences has been observed in treasury
auctions in several countries, see Section 6 for a discussion.

5We discuss the exogenous randomness in more detail in Section 4. In the context of securities, U.S.
Treasury auction regulations do not provide for the announcement of noncompetitive demand prior to the
submission of competitive bids [Garrison, Hawkins, and Burdette], and in Swiss Treasury auctions supply
is not announced [Ranaldo and Rossi, 2016]. An analogous uncertainty over auctioned demand is a feature
of many spot electricity auctions, where demand is determined by the current state of electricity usage; cf.
Federico and Rahman [2003], Hortaçsu and Puller [2008], and U.S. Federal Energy Regulatory Commission
[2020], among others.

6Uniqueness plays a major role in empirical studies of pay-as-bid auctions. Estimation strategies based on
the first-order conditions, or the Euler equation, rely on agents playing comparable equilibria across auctions
in the data (Février, Préget, and Visser [2002], Hortaçsu and McAdams [2010], Hortaçsu and Kastl [2012],
and Cassola, Hortaçsu, and Kastl [2013]). Equilibrium uniqueness plays an even larger role in the study of
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residual supply (that is, the supply given the bids of the remaining bidders), and a best
response picks points on the realizations of residual supply. In determining a best response,
the bidder needs to keep in mind that, in a pay-as-bid auction, a bid is paid not only when
it is marginal (at the clearing price) but also whenever it is strictly above the clearing price.
We show that despite these subtleties the equilibrium bids have an unexpectedly tractable
closed-form representation: the bid for a unit is a weighted average of marginal values on
this and higher units (Theorem 3). We also establish a sufficient condition for the existence
of equilibrium (Theorem 4); our condition is satisfied when, e.g., there are sufficiently many
bidders and their marginal values are smooth.

Turning to design questions, we establish the seller maximizes revenue by transparently
setting the auction’s aggregate supply.7 Specifically, revenue in the unique pure-strategy
equilibrium is maximized when supply is deterministic (Theorem 5). Thus determining the
optimal supply distribution is equivalent to the simpler problem of a monopolist who sets a
price and a quantity cap.8 In some treasury auctions—e.g. in U.S. uniform-price auctions
and Japanese pay-as-bid auctions (cf. Section 4.2)—the distribution of supply is partially
determined by the demand from non-competitive bidders, and treasuries and central banks
retain only partial ability to influence supply distributions but may have pertinent supply
information prior to the auction. We therefore also address the question of how much data
on non-competitive bids a revenue-maximizing seller should release, and show that the seller
wants to commit to fully reveal the realization of supply prior to soliciting bids (Theorem
6).9 These principles of transparent design simplify the design of pay-as-bid auctions in a
way that does not carry over to the design of uniform-price auctions; for the latter we show
that neither deterministic supply nor information release are necessarily revenue-optimal
(Lemma 1).10

counterfactuals (see, e.g., Armantier and Sbaï [2006] and Armantier and Sbaï [2009]).
7We focus on sellers whose objective is revenue maximization. For example, the U.K. Debt Management

Office’s primary objective in security auctions is, “to minimise over the long term, the costs of meeting
the Government’s financing needs,” and the U.S. Treasury’s primary objective in security auctions is, “to
finance the government at the lowest cost over time.” [United Kingdom Debt Management Office, 2012, U.S.
Department of the Treasury, 2019].

8In the main text we focus on the seller setting reserve price and distribution of supply in pay as bid; in
Appendix A we show that our insights are valid for sellers setting a distribution over elastic supply curves
provided bidders’ values satisfy a Myerson-like regularity assumption.

9For the optimality of revealing other relevant information, cf., our supplementary note, Pycia and Wood-
ward [2023a].

10The reason is the multiplicity of equilibria in uniform-price auctions. Specifically, these auctions admit
equilibria with a wide range of revenues; see, e.g., Kremer and Nyborg [2004], LiCalzi and Pavan [2005],
McAdams [2007], Burkett and Woodward [2020b], and Marszalec, Teytelboym, and Laksá [2020]. Depending
on the auctioneer’s concern about equilibrium selection, anticipated revenue may improve with some ran-
domization, see our Lemma 1. Equilibrium in the optimally designed uniform-price auction becomes unique
(and revenue-equivalent to pay as bid) if the seller knows the bidders’ information; cf. Corollary 6. The
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Leveraging our design results, we are able to compare revenues in optimally-designed
pay-as-bid and uniform-price auctions. We prove that the pay-as-bid format always raises
weakly higher revenue than the uniform-price format (Theorem 7).11 In effect, a revenue-
maximizing seller would run a uniform-price auction only if its revenue equaled that of
pay as bid; we may thus expect counterfactual analysis from uniform-price auctions chosen
by revenue-maximizing sellers to find approximate revenue equivalence. Another reason
for the revenue equivalence to obtain is if bidders in uniform price bid truthfully for the
marginal unit, a semi-truthful strategy assumed by some major empirical studies comparing
revenues between pay-as-bid and uniform-price auctions.12 In this way, our results provide
a theoretical explanation for the approximate revenue equivalence found in the empirical
literature we discuss in Section 6.

Our design analysis is focused on pay-as-bid and uniform-price auctions as these are the
two formats treasuries typically choose between. In principle, other mechanisms are possible.
For example, the correlation present in environments we study enables surplus extraction
mechanisms proposed by Myerson [1981] and Crémer and McLean [1988] in which bidders
are induced to reveal their valuations by being charged for differences in their reports, thus
allowing the auctioneer to charge prices extracting nearly all surplus; such mechanisms are
sensitive to collusion and not observed in practice. Or, the government, which has access to
similar macroeconomic data as the bidders, might estimate and post optimal prices. Prior
to the Great Depression, fixed-price mechanisms were employed by, for instance, the U.S.
Treasury, and led to problems such as regular over-subscription, indicating that prices were
set too low.13 A common economic explanation of such government underpricing problems
is the capture of policy-makers by bank lobbies, cf. Buchanan, Tullock, and Tollison [1980],
Laffont and Tirole [1993] and Dal Bó [2006]. Competitive auctions help the auctioneer avoid
such underpricing problems.14

empirical impact of transparency has been extensively studied in the context of over-the-counter markets; for
a recent review of this literature see e.g. Garratt et al. [2019]. The impact of transparency in uniform-price
auctions has been experimentally studied by Hefti, Shen, and Betz [2019].

11This revenue comparison extends to any deterministic distribution of supply, with the same proof,
provided supply is identical in both auctions. The welfare comparison depends on the environment and
equilibrium selection in uniform price.

12See e.g. Hortaçsu and McAdams [2010] and Marszalec [2017], and our discussion below. Bidding truth-
fully for the marginal unit can be—but does not need to be—supported in an equilibrium of an optimally-
designed uniform-price auction. Bids that are robust to informational uncertainty, an equilibrium selection
inspired by Klemperer and Meyer [1989], are not semi-truthful in this sense, cf. Appendix G.1.

13Garbade [2008] provides an overview, but stops short of explaining the reasons for the low prices.
14In a symmetric-information environment, the auctioneer could also try to extract all bidder surplus by

(for example) holding a first-price auction for the entire aggregate quantity and then allowing the winner to
subdivide and resell the awarded allocation. However, market cornering has proved problematic in treasury
auctions [Jegadeesh, 1993], and such “all-or-nothing” mechanisms are therefore politically infeasible. Similar
arguments may be posed against many other exotic and nonstandard allocation mechanisms. The general
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In total, our results make a case in favor of implementing pay as bid over uniform price.
Our model is stylized, and there are many aspects of real-world auctions it fails to capture,
e.g., term structure [Klemperer, 2010], bidder asymmetry [Armantier and Sbaï, 2009, Cole,
Neuhann, and Ordonez, 2022, Pycia and Woodward, 2023b], restrictions on permissible
bids [Kastl, 2012], pre-auction investments (including information acquisition) [Bergemann
and Välimäki, 2002, Arozamena and Cantillon, 2004, Gershkov et al., 2021], entry [Bulow
and Klemperer, 1996, Allen et al., 2024], reputational incentives [Marszalec, Teytelboym,
and Laksá, 2020], distribution of rents [Pycia and Woodward, 2023b], and active collusion
[McAfee and McMillan, 1992].15 Nonetheless, we show that pay as bid has substantive
advantages over uniform price that have not been previously recognized.

In Section 6, we provide a more detailed discussion of how our paper contributes to the
literature.

2 Model

There are n ≥ 2 bidders, i ∈ {1, ..., n}. Bidder i’s marginal valuation for any quantity
q ≥ 0 is denoted v(q; s), where s is a signal known by all bidders but not by the seller. The
seller believes that the signal comes from some commonly known distribution. For any s,
we assume that v(·; s) is nonnegative, strictly decreasing where it is strictly positive, and
Lipschitz continuous and almost-everywhere differentiable; we also assume that, for any s,
the marginal value v (q; s) decreases towards 0 sufficiently fast so that the monopoly problem
maxq≥0 qv (q; s) has a finite solution.16 We impose no assumptions on the space of signals s,
except that v(q; ·) is integrable for any q. Variability of the common signal s has no strategic
importance for bidders participating in an auction, and thus when studying the equilibrium
among such bidders in Section 3, we fix s and denote the bidders’ marginal valuation by
v(q; s) = v(q).

Bidders’ information plays an important role in the analysis of the seller’s problem in
Sections 4 and 5. The seller may not know the bidders’ information if, for example, the seller
needs to commit to the auction mechanism before this information is revealed. Alternatively,
the seller may want to fix a single design for multiple auctions. To simplify the exposition
of the design problem, we normalize the seller’s cost to 0. Our insights do not hinge on this

divisible-good revenue maximization question was addressed by Maskin and Riley [1989], whose optimal
mechanism is quite complex.

15As one of our main results establishes equilibrium uniqueness in pay as bid, our analysis implies that
these auctions are not susceptible to tacit collusion; see Section 6 for a more detailed discussion.

16This last assumption is without loss of generality in environments in which the supply is exogenously
bounded, as then the marginal values on units above the maximum supply play no role in the monopolist’s
optimization.
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normalization, and remain valid for any convex and weakly increasing cost function.17

Our design analysis builds on the existence, uniqueness, and bid representation results for
equilibria of the pay-as-bid auction. In our equilibrium analysis we assume that aggregate
supply Q is drawn from distribution F with support [0, Q], and we further assume that F
is Lebesgue absolutely continuous on (0, Q) with continuous density f > 0; in all results we
also allow F with full mass concentrated at one point.In our analysis of auction design, the
seller is free to choose any distribution F satisfying these conditions, as long as Q ≤ Qmax,
where Qmax is the maximum supply available to the seller.18 In line with the assumption
that the seller does not know s when designing the auction, in results on the design of the
distribution of Q, we assume that Q and s are independent; in our equilibrium analysis and
disclosure results we do not rely on this assumption and allow Q and s to be correlated.

The seller also implements a reserve price R ≥ 0. While capping aggregate supply Q and
setting the reserve price R play similar roles in the seller’s design problem, our analysis shows
that generically both of these instruments are needed to maximize revenue.19 When the seller
employs both of these instruments, the quantity that is allocated is equal to Q if the reserve
is not binding, but it may be lower than Q when the reserve price is binding. For any realized
quantity Q ≤ Q and bidders’ signal s, denote QR (Q, s) = Q for reserve price R = 0 and
QR (Q, s) = min

{
Q,
∑
i=1,...,n v

−1 (R; s)
}
for R ∈ (0, v(0; s)], where v−1 (·; s) is the inverse

function of value given bidders’ signal s (the inverse is well defined for R ∈ (0, v(0; s)]).
Our Theorem 1 below implies that QR (Q, s) is the quantity that is actually allocated. In
particular, when the reserve is binding, the theorem implies that each bidder receives quantity
QR (Q, s) /n = v−1 (R; s). We use QR = QR(Q, s) to denote the effective quantity at the
maximum supply Q.

In the pay-as-bid auction, each bidder submits a weakly decreasing bid function bi(q) :
[0, Q]→ R+. Without loss of generality we assume that the bid functions are right continu-

17With cost function C the above-mentioned monopoly problem becomes maxq≥0 qv (q; s)− 1
nC (nq). The

reason why more general cost functions do not substantively change the analysis is that it builds on the
transparency insight of Theorem 5, and this theorem (and its proof) is valid irrespective of seller’s cost
function as long as it is convex and weakly increasing. Our supplementary note Pycia and Woodward
[2023a] provides a more detailed discussion.

18The assumption that there is an upper bound to feasible aggregate supply is realistic but can be relaxed.
In Appendix A, we show—without restrictions to full support and Lebesgue continuity—that our design
insights remain valid if the seller can choose any distribution over elastic supplies.

19The relative virtues of regulating prices versus quantities have been studied since Weitzman [1974]. The
potential benefit of a hybrid system regulating both prices and quantities was first studied by Roberts and
Spence [1976].
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ous.20 The auctioneer then sets the clearing price, also known as the stop-out price,

p? = max
{
R, sup

{
p′ : q1 + ...+ qn ≥ Q for all q1, . . . , qn such that b1 (q1) , ..., bn (qn) ≤ p′

}}
.

If the set over which the supremum is taken is empty, then the stop-out price is set to the
reserve price R. Agents are awarded a quantity associated with their demand at the stop-out
price,

qi = max
{
q′ : bi (q′) ≥ p?

}
,

as long as there is no need to ration them. When necessary, we ration pro-rata on the margin,
the standard tie-breaking rule in divisible-good auctions.21 The details of the rationing rule
have no impact on the analysis of equilibrium bidding.22 The demand function (the mapping
from p to qi) is denoted by ϕi(·). Where bi(·) is constant, ϕi is not well-defined and we use
ϕi and ϕi to denote the right- and left-continuous inverses of b, ϕi (p) = sup {q : bi (q) > p}
and ϕi (p) = sup {q : bi (q) ≥ p}. Agents pay their bid for each unit received, and utility is
quasilinear in monetary transfers; hence,

ui
(
bi
)

=
∫ qi(p?)

0
v (x)− bi (x) dx.

The above formal definition lends itself to the interpretation that bidders submit separate
bids for each infinitesimal unit of the good, and the auctioneer first fills the infinitesimal unit
with the highest bid, then the infinitesimal unit with the second-highest bid, etc, until the
realized supply is allocated or there are no more bids above the reserve price.

Our analysis focuses on pure-strategy Bayesian Nash equilibria and perfect Bayesian
equilibria, and whenever we write “equilibrium” without any modification we refer to pure-
strategy equilibrium. We also include robustness checks for mixed-strategy equilibria, and
in all such results we explicitly refer to mixed-strategy equilibria. In Appendix A, we show
that our design insights remain valid if we allow mixed strategies and random elastic supply.

20This assumption is without loss because we study a perfectly-divisible good and we ration quantities
pro-rata on the margin. As the bid function is weakly decreasing, by changing it on measure zero of quantities
we can assure the bid function is right continuous. Such a change has no impact on the bidder’s profit, or
on the profits of any of the other bidders, provided the quantity assigned to each bidder increases when the
stop-out price decreases; a monotonicity property satisfied by tie-breaking pro-rata on the margin. In fact,
there is no impact on bidders’ profits even conditional on any realization of Q.

21For completeness, we provide the definition of rationing pro-rata on the margin in Appendix A.
22In equilibrium, supply equals demand at the stop-out price. All we need in our analysis is that rationing

rule is monotonic in the sense of footnote 20. The resulting independence of equilibrium of specific tie-
breaking rules is in stark contrast to uniform-price auction, where tie-breaking matters; see Kremer and
Nyborg [2004].
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Figure 1: In equilibrium, bids (dashed line) must equal values at the maximum quantity
which can be received (Theorem 1). Otherwise, a small upward deviation (dotted line) can
obtain a discretely greater utility (hashed area) at minimal additional cost (lined area). Note
that the profitability of this deviation exists as long as v(q̄) > b(q̄), and does not depend on
the auction’s reserve price R.

3 Pay-as-Bid Equilibrium

We focus on pure strategy equilibria, except as otherwise noted. In the analysis we hold
bidders’ common signal s fixed and simplify notation by denoting the bidders’ marginal
valuation v(q; s) by v (q). We begin the analysis by providing a tight bound on the clear-
ing price, then we leverage this bound to provide a closed-form expression for the unique
equilibrium bid profile.

3.1 Minimum Market Price

Our analysis of optimal bidding relies on the following key theorem in which we allow mixed-
strategy equilibria.

Theorem 1. [Minimum Market Price] In any mixed-strategy equilibrium of the pay-as-
bid auction, the clearing price for the effective maximum quantity QR is, with probability 1,
given by

p
(
Q
R
)

= v
( 1
n
Q
R
)
.

As we allow mixed strategies, p
(
Q
R
)
is a priori a random variable; part of the theorem’s

claim is that it is deterministic. Since probability-zero changes to bidding strategies and
measure-zero changes to bids have no effect on utility or incentives, without loss of generality
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in the sequel we assume that, for all bidders i,

bi(QR
/n) = p(QR) = v(QR

/n),

and we treat these quantities as deterministic; furthermore, Theorem 1 allow us to speak
unambiguously about the minimum clearing price (given the fixed signal s), p = v(QR

/n).23

The equality of the clearing price at the maximum supply and each bidder’s marginal value
at the last unit they receive is illustrated in Figure 2.

The intuition for this theorem is that a bidder with a strictly positive margin at the
maximum feasible quantity could slightly increase their bid and obtain a non-negligible
additional quantity at minimally higher price, which would be a profitable deviation. Figure
1 illustrates this intuition and the proof of Theorem 1 (in Appendix D) formalizes it, taking
care of technical complications related to mixed strategies, tie-breaking, flat bids, and binding
monotonicity constraints. Of course, this intuition applies only to the maximum quantity at
which the increased bid is paid only when it is marginal; at any lower quantity the increased
bid would need to be paid also when inframarginal, hence bids will in general be below values
for lower quantities.24

Theorem 1 plays a crucial role in the equilibrium uniqueness result for symmetrically
informed bidders we state next, and therefore in many of our subsequent results.

23Theorem 1 determines the minimum clearing price because the clearing price is weakly decreasing in
total quantity sold (an implication of bids being weakly decreasing in quantity), and hence the clearing
price is minimized at effective maximum supply Q

R. The clearing price at supply lower than Q
R can

(and frequently does) rise above the lower bound v(QR/n). The assumption that bi(QR/n) = v(QR/n) is
consistent with right continuity because bids for never-awarded quantities need only to be weakly below
v(QR/n) and sufficiently aggressive to deter opponent deviations.

24Recall that we assume marginal values are continuous. This assumption may be violated if bidders have
quantity caps, modeled as marginal values dropping discontinuously to zero at the quantity cap. Although
such caps are rare in forward auctions they are common in procurement contexts (see, e.g., Genc [2009] and
Anderson, Holmberg, and Philpott [2013]). In the presence of such a discontinuity an analogue of Theorem
1 holds: given quantity cap c, if QR/n < c then p(QR) = v(QR/n); if QR/n = c then p(QR) ∈ [R, v(QR/n)];
and if QR/n > c then p(QR) = R. The second case holds because bids are weakly positive and below
marginal values on relevant units. The third case obtains because there is strict excess supply. Analogous
results hold for Bertrand-Edgeworth competition games. E.g., Allen and Hellwig [1986] establish that the
pure strategy-equilibrium exists only if the highest competitive price and lowest monopoly price and then
the equilibrium price is equal to this common value (for the relation to our existence result see footnote 31).
However, for mixed strategy equilibria they find only a weak analogue of our bound: the equilibrium price
is between lowest competitive price and highest monopoly price; equilibrium price multiplicity arises from
the coarse strategy space and firms’ inability to use payoff-irrelevant behavior to deter opponent deviation.
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3.2 Existence, Uniqueness, and Bid Representation

We first show that equilibrium is unique and tractable whenever it exists. The existence
of equilibrium can then be analyzed in terms of what equilibrium strategies must be, if
an equilibrium exists. We therefore defer discussion of existence until after our uniqueness
and representation results, and for expositional simplicity our uniqueness and representation
results are formulated conditional on the existence of Bayesian Nash equilibrium. Proofs of
all these results may be found in Appendix E.

We focus on relevant quantities, by which we mean the quantities that a bidder can win
with positive probability in equilibrium. We say that an equilibrium is essentially unique if
the set of relevant quantities and the bids on relevant quantities are the same in all equilibria;
in particular, the clearing price, payments, and allocations conditional on the realization of
supply is then the same in all equilibria; bids for quantities which the bidder never receives
do not need to be uniquely determined.

Theorem 2. [Uniqueness] The Bayesian Nash equilibrium is essentially unique.

To get a sense why this theorem obtains, note that if we restricted attention to symmetric
and smooth equilibria satisfying the first order condition (which we do not), then uniqueness
would follow from Theorem 1. Indeed, in a symmetric smooth equilibrium bidders’ first-
order conditions give us an ordinary differential equation and Theorem 1 provides us with
a unique initial condition for this equation by uniquely determining the price p(QR) at the
maximum supply and hence, in a symmetric equilibrium, the bids for quantity QR

/n. The
proof builds on this idea and addresses the difficulties raised by potential asymmetries, non-
differentiabilities, and discontinuities.25

Our analysis of uniqueness allows us to construct equilibrium bidding strategies, which
turn out to be surprisingly tractable. We formulate the strategies using the auxiliary concept
of a weighting distribution (discussed after the theorem): for any quantity Q ∈ [0, Q), the

25Our uniqueness result stands in contrast to nonuniqueness results in uniform-price auctions (cf. Klem-
perer and Meyer [1989]) and in Bertrand competition (cf. Weibull [2006] and Burguet and Sákovics [2017]).
We discuss uniform-price auctions in Section 5. In Bertrand competition, convex costs correspond to our de-
creasing marginal value curve. We obtain uniqueness where Bertrand competition allows nonuniqueness for
two reasons. First, our bidders’ strategy space is larger. Bertrand competitors who undercut must supply all
market demand whether or not doing so is profitable, while our bidders may submit a limit bid which yields
them only as much quantity as they desire. Second, our bidders have marginal values which are continuous
in quantity; if their true marginal values were discontinuous equilibrium then uniqueness would no longer
follow. For example, if marginal values were discontinuous at deterministic per-capita supply, then flat bids
at any price between the left- and right-hand limits at this quantity can be sustained in equilibrium.
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n-bidder weighting distribution has c.d.f.

FQ,n (x) = 1−
(

1− F (x)
1− F (Q)

)n−1
n

.

Note that FQ,n has support [Q,Q] and increases from 0 when x = Q to 1 when x = Q;
further discussion of FQ,n follows our bid representation result.

Theorem 3. [Bid Representation] The essentially unique equilibrium is symmetric. For
any quantity q ∈ [0, QR

/n], the bid bi of each bidder i is given by

bi (q) =
∫ Q

nq
v

min
{
x,Q

R
}

n

 dF nq,n (x) . (1)

In particular, when the distribution of supply has full support [0, Q] then equilibrium
bids are strictly decreasing in quantity, for q ∈ [0, QR

/n]. We impose no assumptions on
symmetry of equilibrium bids, their continuity nor their differentiability; we derive all these
properties. Because the unique equilibrium is symmetric, the bid functions allow us to
express the clearing price for any realization of supply Q ∈ [0, Q] as

p (Q) = bi
(
Q

n

)
=
∫ Q

Q
v

min
{
x,Q

R
}

n

 dFQ,n (x) . (2)

Furthermore, when the reserve price does not bind, formulas (1) and (2) simplify, as QR = Q

and min
{
x,Q

R
}

= x; in this case the equilibrium bid equation can be rewritten as

bi (q) =
∫ Q

R

nq
v
(
x

n

)
dF nq,n (x) .

When the reserve price is binding, R > v
(
Q
)
, the bid function is the same as if the supply

was distributed on
[
0, QR

]
with a mass point at QR.

The weighting distributions depend only the number of bidders and the distribution
of supply, and not on any bidder’s true demand. As the number of bidders increases the
weighting distributions put more weight on lower quantities. In the limit, on its support
FQ,n(x) converges to F (x)−F (Q)

1−F (Q) ; that is, to the distribution of supply conditional on it being
above Q. We can re-express the bid function in terms of per-capita supply as

b (q) =
∫ Q

per capita

q
max

{
v (x) , v

(
Q
R,per capita

)} f per capita (x)
1− F per capita (q)

(
n− 1
n

)(1− F per capita (q)
1− F per capita (x)

) 1
n

dx,
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where Qper capita = Q/n, QR,per capita = Q
R
/n, F per capita (q) = F (nq) and f per capita is this c.d.f.’s

density. When the number of bidders becomes large, holding per capita supply constant, the
right-hand multiplicands approach f per capita (x) /(1 − F per capita(q)), which is the conditional
density at x given that realized per-capita supply is at least q; this limit is approached fairly
rapidly as n−1

n

(
1−Fµ(q)
1−Fµ(x)

) 1
n approaches 1 rapidly (the impact on bids is depicted in Figure

4). Thus, in the limit, the theorem expresses the bid for quantity q as the average marginal
value for the marginal unit, conditional on receiving quantity above q. In other words, in the
large-n limit the bid on any relevant quantity q is equal to the expected Walrasian market
clearing price conditional on the bidder receiving q, which is the event when changing the
bid for unit q might affect the bidder’s ex post payoff; a corresponding limit economy result
is established in Swinkels [2001]. In the competitive limit the bidder bids away all marginal
rents. Expected utility is still positive since marginal utility is decreasing in quantity, hence
bidding away marginal rents leaves rents for inframarginal units.

Away from the competitive limit, the bidder might retain rents not only on inframarginal
units but also on marginal units. The fewer bidders are in the auction, the more market
power the bidders have and the higher are their rents on marginal units: this is reflected
in the exponent (n − 1)/n in the weighting distribution FQ,n. The equilibrium bids bi are
appropriately-weighted averages of bidders’ marginal values v, and in this they resemble both
the bids in the competitive limit and the bids in first-price auctions with privately-informed
bidders. Because marginal values are decreasing in quantity, bids are below values—that is,
bidders are shading their bids—except for the bid on the effective maximum quantity where
limit equality obtains, an equality consistent with Theorem 1.26

In the special case when supply is deterministic, our bid representation implies that
the bid function is flat on quantities up to Q

R
/n. It can be easily seen that flat bids

can be supported in an equilibrium. Given deterministic supply the bidders know exactly
the quantities they will receive in equilibrium: a deviation increasing the bid for lower
quantities increases the payment to the seller without improving the bidder’s allocation;
a deviation decreasing the bid decreases the allocation and the decrease discourages the
deviation provided opponents’ bids on quantities above QR

/n are sufficiently high.
As an example note that when marginal values v are linear and the supply distribution

F is generalized Pareto, F (x) = 1−
(
1− x

Q

)α
for some α > 0, then our bid representation

shows that the equilibrium bids are linear in quantity. The linear-Pareto case of our gen-
eral setting has been analyzed by Ewerhart, Cassola, and Valla [2010] and Ausubel et al.
[2014], who constructed the linear equilibrium directly in terms of the slope and incident of
demand and the parameters of the Pareto distribution. Our general results contribute to

26Wittwer [2018] discusses further intuition behind our representation.
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Figure 2: Equilibrium bids (b) when marginal values (v) are linear and the distribution
of supply Q is truncated normal with mean 3 and standard deviation 1, truncated to the
interval [0, 6]. Only quantities up to 0.6 are relevant; bids on relevant quantities are uniquely
determined, but bids on higher quantities are not. To plot the distribution and the bids over
the same domain, we display the distribution (F p.c.) of per capita supply Qper capita instead
of F .

our understanding of this example by allowing us to conclude that the linear equilibrium is
essentially unique in the class of all pure-strategy equilibria, and that bids remain linear in
the linear-Pareto setting even in the presence of a reserve price. Outside of the linear-Pareto
setting, bids of course do not need to be linear; Figure 2 illustrates non-linear equilibrium
bids in an example in which ten bidders with linear marginal values face a distribution of
supply that is truncated normal.27

Our bid representation theorem allows us to establish when an equilibrium exists because
it derives the unique equilibrium bids on relevant quantities, conditional on equilibrium
existence. When these bids are played in an equilibrium, we can express the expected utility
of a bidder i as

E[ui] =
∫ Q

R
/n

0
U (q; q) dq,

where U : [0, QR
/n]2 → R is given by

U (q̂; q) = (v (q)− b (q̂)) (1− F (q + (n− 1) q̂)) ,
27In all figures, we check our equilibrium existence condition and draw bids numerically using Python

and R. Bids for irrelevant quantities q > Q
R
/n are not uniquely determined; we verify them using the

methodology developed in Appendix E.5.
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and b is the bid function derived in Theorem 3.28 The function U(q̂; q) may be interpreted
as the contribution of unit q to the bidder’s expected utility when she bids b(q̂) for this unit.
Indeed, when bidder i bids b(q̂) for unit q, she receives this unit whenever realized supply is
Q ≥ q + (n− 1)q̂.

Theorem 4. [Existence] There exists a pure-strategy Bayesian Nash equilibrium in the
pay-as-bid auction whenever, for almost every q ∈ [0, Q/n], the first derivative of U(·; q) is
zero only at the global maxima of U(·; q).

The proof of this theorem extends the bidding strategies bj (q) = b (q) from Theorem 3
beyond relevant quantities q and shows that then

∫QR/n
0 max

q̂∈[0,QR/n] U(q̂; q)dq is an upper
bound on the bidder i’s expected utility for any bidding strategy. This approach allows us
to verify pointwise that b is a best response.

Our sufficient condition is satisfied when, for example, the function U(·; q) is pseudo-
concave, and hence also when U(·; q) is concave. The condition is also satisfied when the
distribution of supply is deterministic. Additionally, our sufficient condition is closed with
respect to several changes of the environment: adding a bidder, making marginal values less
concave (or more convex), and raising the reserve price all preserve existence. In regular
problems, the existence condition is satisfied as soon as there sufficiently many bidders.

Corollary 1. [Existence with many bidders] Suppose that marginal values are differen-
tiable and have slope bounded away from zero at all strictly positive marginal values, and that
the density of per-capita supply is bounded away from 0 on

(
0, Q

)
and has bounded deriva-

tive. If there are sufficiently many bidders, then a pure-strategy Bayesian Nash equilibrium
exists.

Regardless of market size, our sufficient condition is satisfied in the aforementioned
linear-Pareto environment and it is satisfied whenever the inverse hazard rate H is increas-
ing—hence when the hazard rate is decreasing—irrespective of the marginal value function
v.29 Our existence condition is satisfied in the examples illustrated in Figures 2-4, which
include a truncated normal distribution, strictly concave marginal values, and reserve prices.

Our existence condition is also satisfied when supply is deterministic. Suppose that
the seller commits to supply quantity Q. As supply is deterministic, the auxiliary density

28This expression for equilibrium expected utility can be obtained via integration by parts; see footnote
77.

29The existence of equilibrium in the linear-Pareto environment was established by Ewerhart, Cassola,
and Valla [2010] and Ausubel et al. [2014] for bounded generalized Pareto distributions and Wang and
Zender [2002], Federico and Rahman [2003], and Holmberg [2009] for unbounded Pareto distributions. The
sufficiency of decreasing hazard rate for equilibrium existence was established by Holmberg [2009]. Theorem
4 also implies the existence results of Jackson and Swinkels [2005] and of Jackson and Kremer [2006], who
showed that an equilibrium exists in the limit as per-capita supply goes to zero.
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dFQ,n(x) is equal to 0 for all x < Q, and equilibrium bids are flat; the expression (v(q) −
b(q̂))(1 − F (q + (n − 1)q̂) = U(q̂; q) is therefore constant on q̂ ∈ [0, QR

/n]. Recall that we
independently verified the existence of equilibrium in the deterministic case in our discussion
of Theorem 3.

Equilibrium existence in the case of deterministic supply is important as in Section 4
and Appendix A we show that revenue is maximized when supply is known before bids
are submitted. There are, however, supply distributions for which no pure-strategy equilib-
rium exists.30 Holmberg [2009] recognizes this possibility, and Genc [2009] and Anderson,
Holmberg, and Philpott [2013] show that pure-strategy equilibria may not exist when all
bidders are pivotal, equivalent in our model to assuming that random supply does not have
full support; equilibrium nonexistence arises from bidders’ incentives to iron their bids (cf.
Woodward, 2016).31

3.3 Comparative Statics

Our bid representation implies that supply concentration leads to flat bids and low margins on
bids near the per-capita concentrated quantity. We say that a distribution is δ-concentrated
near quantity Q∗ if 1− δ of the mass of supply is within δ of quantity Q∗.

Corollary 2. [Flat Bids] For any ε > 0 and quantity Q∗ there exists δ > 0 such that, if
supply is δ-concentrated near Q∗ ≤ Q

R, then the equilibrium bids for all quantities lower
than Q∗

n
− ε are within ε of v

(
Q∗

n

)
.

Bid concentration is especially straightforward to see in large markets, where bidders can
affect their allocation but not the clearing price. In a large market each bidder picks the
price they are willing to pay for each quantity, net of the unwillingness to overpay for this
quantity when it is inframarginal. When per capita supply is concentrated at Q∗/n, there
is at worst a small probability that quantity Q∗/n will be inframarginal, hence the bidder is
willing to pay nearly v(Q∗/n).

Figure 3 depicts the flattening of equilibrium bids predicted by Corollary 2, in a moderately-
sized market; in the three sub-figures ten bidders face supply distributions that are increas-
ingly concentrated around the total supply of 6 (per capita supply of 0.6). In the special

30Mixed-strategy equilibria always exist; see Theorem 8 in Appendix A.
31In contrast with equilibrium existence in pay-as-bid auctions with deterministic supply, pure-strategy

equilibria may fail to exist in Bertrand-Edgeworth competition games even in deterministic environments
(Edgeworth 1925, Allen and Hellwig 1986, Dasgupta and Maskin 1986a,b, Burguet and Sákovics 2017). In
these games, each firm selects a price or a price-quantity pair rather than a supply curve, and firms cannot
price quantities they do not posses. In a multi-unit auction bidders submit demand curves and can bid
on quantities they never win. This enables them to discourage opponent deviations, thereby ensuring the
existence of a pure-strategy equilibrium.
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Figure 3: Bids (b) are flatter for more concentrated distributions (F p.c.) of per-capita supply,
holding constant marginal values (v) and the number of bidders (n = 10).

case of deterministic supply, which is 0-concentrated, Corollary 2 implies that equilibrium
bids are perfectly flat.

The practical implications of Corollary 2 may be observed in U.S. Treasury auctions for
short-term securities. Hortaçsu, Kastl, and Zhang [2018] show that in these auctions supply
randomness is low, and empirically-observed uniform-price bids are nearly flat. Because
supply randomness is low, Corollary 2 implies that counterfactual pay-as-bid bids would
also be nearly flat, and changing the auction format would yield little additional revenue.32

Theorem 4 implies that if equilibrium exists in two component markets with the same
per-capita supply distribution, then equilibrium exists in the merged market. Our bid repre-
sentation further implies that bidders’ equilibrium margins are lower and the seller’s revenue
is higher when there are more bidders:

Corollary 3. [More Bidders and Marketplace Mergers] Bidders submit higher bids,
the seller’s revenue is higher, and each bidder’s profits smaller when there are more bid-
ders—both when the supply distribution is held constant, and when the per-capita supply
distribution is held constant. In particular, the sum of revenues from markets with n1 and
n2 bidders and the same per-capita supply distribution is less than the revenue from the joint
market with n1 + n2 bidders.

The corollary follows because as the number of bidders increases, 1−FQ,n (x) =
(

1−F (x)
1−F (Q)

)n−1
n

decreases, and hence FQ,n (x) increases, thus mass in the weighting distribution is shifted
towards lower x, where marginal values are higher. At the same time, the marginal value at
x either increases in n (if we keep the distribution of supply constant) or stays constant (if
we keep the distribution of per-capita supply constant). Our bid representation also implies

32Hortaçsu, Kastl, and Zhang [2018] use inferred marginal values to show that bidders do not obtain
much surplus; thus changing the auction format cannot yield much additional revenue. Our corollary goes
beyond their analysis by showing that given flat uniform-price bids and relatively certain supply, changing
the auction format also cannot cost much revenue. See Section 6 for further discussion of flat bids.
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Figure 4: Bids for relevant quantities increase when more bidders arrive, but not by much:
10 bidders on the left and 10 million bidders on the right. Axis scales and the the per-
capita quantity distribution (F p.c., truncated Gaussian distribution with maximum per capita
supply of 0.6) are the same in both panels.

that when within-market per capita supply is similar across divided markets, merging the
markets will improve total revenue; however, if the two markets have substantially different
per capita supply, then merging them might decrease total revenue. Similar market-merger
conclusions have been derived for uniform-price auctions, cf., e.g., Rostek and Yoon [2021],
Fabra and Llobet [2021], Wittwer [2021]. On the other hand, Theorem 5 below implies that
with optimal supply in both markets (and both markets having at least two bidders each),
merging the markets will have no effect on revenue if the per-capita supply is the same in
the markets being merged; if the per-capita supply differs across these markets than the
merger increases the revenue if bidders’ true marginal demands are concave but decreases
the revenue if the true marginal demands are convex.

While bidders raise their bids when facing more bidders even if the per-capita distribu-
tion stays constant, our bid representation theorem implies that the changes are small; the
intuitive reason is that as the number of bidders goes to infinity, our equilibrium construction
converges to that in the large-market analysis of [Swinkels, 2001].33 This is illustrated in
Figure 4 in which increasing the number of bidders from 10 bidders to 10 million bidders
has only a small impact on the bids.

33If we keep the supply distribution fixed while more and more bidders participate in the auction, then in
the large market limit revenue converges to average supply times the value on the initial unit. See Swinkels
[2001] for limit results with fixed per-capita supply and Jackson and Kremer [2006] for limit results with
fixed supply.
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4 Designing Pay-as-Bid Auctions: Transparency and
Disclosure

In this section we maintain the assumption that the pay-as-bid format is run and analyze the
design of such auctions. We focus on the reserve price and the distribution of supply, the two
natural elements of pay-as-bid auction that the seller can select, and we continue to impose
the assumptions applied in the equilibrium analysis of Section 3.2; in particular we restrict
attention to pure-strategy equilibria.34 In Appendix A, we relax all these assumptions while
also allowing elastic supply and mixed-strategy equilibria, and show that our transparency
insight (Theorem 5) remains valid.

As design decisions are taken from the seller’s perspective, our terminology in this and
the subsequent sections now explicitly keeps track of the bidders’ information s.

4.1 Transparency

The key insight that underlies our design analysis is that—in contrast to typical multidimen-
sional mechanism design problems discussed in the introduction—in an optimized pay-as-bid
auction deterministic—and, hence, transparent—supply is optimal. Furthermore, if supply
is exogenously random, then it is optimal for the seller to set a deterministic supply cap;
and, independent of whether a supply cap is feasible, it is optimal to announce the realized
supply to the bidders prior to the auction.

First, suppose that the seller has some deterministic quantity Q of the good; we relax
this assumption below. For any fixed reserve price, we consider the problem of designing
a supply distribution F that maximizes the seller’s revenue. The seller has the option to
offer a stochastic distribution over multiple quantities, up to Q; this supply distribution is
independent of the bidders’ information s, which the seller does not know at the time the
auction is designed. In a treasury auction, a seller may commit to random supply sold at
auction by setting it equal to a total supply net of sales to non-competitive buyers, a common
practice in the treasury auctions in the U.S. [TreasuryDirect, 2022] and Japan [Hattori and
Takahashi, 2022]. It is also plausible that such randomization could increase the seller’s

34When pay as bid is employed by central banks and governments, allocational efficiency may be an
important concern and a reason a seller may want to ensure that a equilibrium in pure strategies is being
played. The symmetry of equilibrium strategies we prove in Theorem 3 implies that in such equilibria the
marginal value for any unit received is higher than the marginal value for any unit not received. There
are thus no efficiency improving re-allocations of units among bidders; this property trivially fails in any
mixed-strategy equilibrium that is not essentially in pure strategies. Recall also that our Corollary 1 shows
that, for any generic supply distribution, a pure strategy equilibrium exists when there are sufficiently many
bidders.
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expected revenue. For instance, stochastically offering quantities lower than the optimal
monopoly quantity Q? (subject to the supply constraint), results in a tradeoff: the seller
sometimes sells less than Q?, with a direct and negative revenue impact, but when he sells
quantity close to Q? or higher he may receive higher payments due to the pay-as-bid nature
of the auction. This tradeoff is illustrated in Figure 3, in which concentrating supply lowers
the bids.

We show that selling the deterministic supply Q? is in fact revenue-maximizing; for this
reason in the sequel we refer to Q? as optimal supply.

Theorem 5. [Transparency of Optimal Supply] The seller’s revenue under non-deterministic
supply is strictly lower than under optimal deterministic supply. Optimal deterministic sup-
ply is given by the solution to the monopolist’s problem when facing uncertain demand.

As the following proof sketch indicates, Theorem 5 remains valid if the reserve price is
arbitrary rather than optimized. The theorem also remains valid for sellers who maximize
profits equal to revenue net of costs, provided the marginal cost curve is weakly increasing.
Such sellers optimally choose the deterministic quantity that maximizes the expected revenue
minus cost rather than the quantity that maximizes the expected revenue. Taking the cost
into account affects what quantity is optimal, but it does not change the result that optimal
supply is deterministic.

To prove Theorem 5, we start with an arbitrary reserve price and supply distribution
and the induced pure-strategy equilibrium bids. Holding equilibrium bids fixed, we use our
bid representation from Theorem 3 to bound expected revenue by the standard monopoly
revenue given the supply distribution.35 In effect we obtain the following bound on the
expected revenue,

Es,Q
[
πF (Q; s)

]
≤
∫ Q

R

0
Es
[
πδQ (Q; s)

]
dF (Q) , (3)

where πF (Q; s) is the seller’s revenue when the bidders’ signal is s, the realization of supply
is Q, and bidders bid against the distribution of supply F , while πδQ (Q; s) is the seller’s
revenue when the bidders’ signal is s, the realization of supply is Q, and bidders bid against
the supply distribution δQ that puts probability 1 on quantity Q. Note that πδQ(Q; s) is
a monopolist’s profit from selling quantity Q to buyers with common signal s. This upper
bound implies that the seller’s revenue is maximized when the seller sets the supply to be
always equal to the revenue-maximizing deterministic supply. We provide the details of the

35This argument hinges on re-assigning the revenue across supply realizations; in particular, the actual
revenue conditional on a supply realization is not necessarily bounded by the revenue the seller would obtain
by setting the deterministic supply fixed at the conditioning supply realization.
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proof in Appendix G (bound (3) above restates inequality (10) in the proof). An auctioneer
choosing a deterministic supply and reserve price to maximize revenue against uncertain
bidder values faces the same problem as a monopolist choosing a price floor and quantity
cap against uncertain demand.36 Thus, the pay-as-bid auctioneer’s problem reduces to a
monopoly problem.

A related result holds true in environments in which the seller’s underlying supply is
random and the seller can withhold supply but not increase it above the underlying supply
realization. We assume that the underlying distribution of supply allows a pure-strategy
equilibrium, and that, capping supply, the seller wants to preserve the existence of a pure
strategy equilibrium.37 We allow the joint distribution of underlying supply and bidders’
signal s to be otherwise arbitrary, with an exogenous upper bound on supply Q.38 We
allow the seller to commit to a possibly random cap Q̂, independent of s and the underlying
supply realization; that is the seller can reduce the supply to some random Q̂ whenever the
underlying realized supply is higher than Q̂, and otherwise leave the supply unchanged.

Proposition 1. [No Need for Additional Randomness] The seller’s revenue under
non-deterministic supply cap is weakly lower than under optimal deterministic supply cap.

In Appendix B we further extend the transparency theorem to auctioneers whose revenue
is the sum of revenue from the auction (accepted bids of competitive bidders) and revenue
from noncompetitive demand filled at the price determined in the auction.

4.2 Full Disclosure

As an application of our analysis let us note that the seller who runs an auction with random
supply would like to fully reveal the realized supply. For instance, in the United States
[TreasuryDirect, 2022] and Japan [Hattori and Takahashi, 2022], the seller announces joint
supply of debt to be sold in an auction and allocated to noncompetitive bidders, and the
supply sold in an auction is then the residual supply after noncompetitive bidders’ demand is
filled. The seller thus finds transparency optimal both in the sense of setting a deterministic
supply (or supply cap) and in the sense of revealing the seller’s information about supply.

To formalize this full-disclosure insight we enrich our base model as follows. We assume
that the joint distribution of supply and bidders’ signal s is exogenously given and commonly
known. Before learning the realization of supply, the seller can publicly commit to an auction

36For more details on the monopolist’s problem, see Pycia and Woodward [2023a].
37If the underlying distribution satisfies the assumptions of Theorem 4, then this theorem implies that

there exists a pure-strategy equilibrium for any deterministic supply cap.
38The boundedness could be replaced by other assumptions that guarantee that the optimal solution exists,

such as for instance that there is a finite q > 0 such that for all s, v(q; s) = 0.
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design (reserve price and supply restriction) and a disclosure policy; a disclosure policy
maps the realization of supply to a distribution of public announcements (messages) from an
arbitrary space of messages. After publicly committing to a disclosure policy and an auction
design, the seller learns the realization of supply and announces the message prescribed by
the disclosure policy. Then, the bidders learn their value and bid in the auction.

Theorem 6. [Optimality of Information Disclosure] The seller’s expected revenue is
maximized when the seller commits to fully reveal the realization of supply.

Before presenting a surprisingly simple argument deriving this theorem from our preced-
ing analysis, let us observe that Theorem 6 remains valid even if the seller does not optimize
the reserve price and supply cap in the auction and these parameters of the auction are ar-
bitrarily set, with no change in the proof. In addition, because we prove Theorem 6 for the
environment in which the seller can commit to a disclosure strategy, the same full disclosure
insights a fortiori hold true for environments where the seller cannot commit.

Proof. Suppose that the seller commits to a disclosure strategy and this strategy leads to
a message that induces the bidders to believe that the distribution of supply (conditional
on the seller’s disclosure and bidders’ signal s) is F̂ with upper bound of support Q̂. An
analogue of the revenue bound (3) gives39

Es,Q
[
πF̂ (Q; s)

]
≤ Es

∫ Q̂R

0

[
πδx (x; s)

]
dF̂ (x; s) . (4)

Thus expected revenue is bounded above by the expected revenue obtained by the seller
fully revealing to the bidders the realization of supply. In consequence, the seller’s expected
revenue is maximized when the seller ex ante commits to fully reveal the realization of
supply.

Note that we allow arbitrary correlation between the exogenous supply distribution F and
the bidders’ signal s: regardless of the statistical relationship between these two sources of
randomness, the seller strictly prefers announcing supply where possible. As with Theorem 5,
an analogue of Theorem 6 remains valid when the seller obtains revenue from noncompetitive
demand, see Appendix B. Furthermore, in the supplementary note [Pycia and Woodward,
2023a], we show that the revenue-maximizing seller not only would like to reveal supply
information but, if the seller has information relevant for bidders’ valuations, the seller
would like to release it as well.40

39In the proof of Theorem 5 we derive the present bound, which applies whether ot not the distribution
of supply is independent of s. In the environment of Theorem 5 the seller designs the supply distribution
without knowing s, and thus the general bound takes there the simpler form of inequality (3).

40In 2013, the New York Federal Reserve considered increasing the transparency of its pay-as-bid liquidity
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4.3 The Contrast with Uniform Price

The optimality of transparency and full revelation hinges on using the pay-as-bid format. In
uniform-price auctions, it can be optimal to randomize supply and not disclose the realiza-
tion of randomness; Section 5 defines these auctions and shows that a wide range of supply
randomizations might be optimal. One reason to use randomization is to prevent a form of
tacit collusion that has been observed in uniform-price auctions. For instance, Harbord and
Pagnozzi [2014] discuss the revelation of demand information in uniform-price procurement
auctions for power generation capacity in Colombia and in New England, and Schwenen
[2015] discusses uniform-price procurement for power capacity in New York; these papers
show that the price in these auctions can be determined by tacit collusion, where submitted
bids are too low to be profitably undercut on the margin (these papers study procurement
auctions, in which bidding low corresponds to bidding high in our model). Increasing the
randomness of supply could benefit the seller by breaking this equilibrium. Analogous equi-
libria do not occur in pay as bid, because the fringe bidders would need to pay their high
bids (or sell at the low bids).

5 The Auction Design Game: Pay as Bid Dominates
Uniform Price

Sellers of homogeneous goods are not constrained to use pay-as-bid auctions. As we discuss
in the Introduction, sellers usually choose between implementing a pay-as-bid auction or
implementing a uniform-price auction, and which of these two formats is preferred has been
an important open question. We resolve this question by showing that choosing pay as bid
is weakly dominant for the seller provided the supply and reserve are optimally designed.
Earlier comparisons of these formats, e.g., Ausubel et al. [2014], did not take the seller’s
endogenous choices into account.

In this section we explicitly model the seller’s choice between pay-as-bid and uniform-
price formats, as well as among supply distributions and reserve prices, as an extensive-form
auction design game. This game has two stages. In the first stage, the seller commits to a
reserve price, a distribution of supply, and the auction format (pay-as-bid or uniform-price).
We also consider constrained design games in which the auction format is fixed; we refer to
these as pay-as-bid design game and uniform-price design game. In the second stage, bidders

auctions and providing the bidders with more information, including on supply, prior to each auction. They
asked one of us (Pycia) for relevant theoretical results; our results support disclosure. The broader theme of
transparency in central banking was championed at the time by Mark Carney of the Bank of England (cf.,
e.g., [Chan, 2020].
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participate in the specified auction.41 We consider perfect Bayesian equilibria of these games.
While it is a departure from prior design literature, our explicit modeling of both stages of
the seller’s design problem allows us to use the tools of game theory to analyze the feedback
loop between the continuation equilibrium in the bidding stage and the choices the seller
faces in the design stage. Two of the insights of this section hinge on the recognition of
this equilibrium feedback loop. Lemma 1 establishes the possibility of a low revenue and
low welfare trap in uniform price, wherein the seller optimally sets the reserve high so as to
prevent low price continuation equilibria; the resulting surplus loss can be so severe that the
seller and all buyer types may have lower payoffs than they would have in optimally-designed
pay as bid (cf. also Appendix C). Corollary 5 tells us that when a revenue-maximizing seller
employs uniform-price auctions then they should generate roughly the same revenue as pay-
as-bid auctions. As we discuss in Section 6, this result is consistent with empirical revenue
comparisons between an observed uniform-price auction and a counterfactual pay as bid.

As in Section 4 we focus on the reserve price and the distribution of supply and we
continue to impose the assumptions applied in the equilibrium analysis of Section 3.2; in
particular we restrict attention to pure-strategy equilibria. In Appendix A, we show that
our revenue comparisons (Theorem 7 and Corollary 5) remain valid after we relax all these
assumptions and allow any random elastic supply and any mixed-strategy equilibria.

5.1 Uniform-Price Auctions

As discussed above, uniform-price auctions are the main alternative to the pay-as-bid auction
format. In the uniform-price auction, the space of feasible bids, the clearing price p?, and
allocations qi are defined in the same way as in pay as bid (see Section 2). The only feature
distinguishing the two formats is the bidders’ payment rule: instead of paying their own
bids, in the uniform-price format each bidder i pays a constant clearing price per unit, hence
bidder i’s payment is p?qi.

As mentioned in Section 4.3, in a uniform-price auction it may be optimal to commit
to random supply. A key reason this might happen is the failure of equilibrium uniqueness
in uniform price. Because bidders’ continuation equilibrium can be selected based on the
chosen distribution of supply, it is possible that choosing deterministic supply will yield lower
revenue than random supply: when bidders play a low-revenue equilibrium when supply is
deterministic (or close to deterministic), and play a high-revenue equilibrium otherwise, the
seller may optimally concentrate the supply distribution around the deterministic optimum

41The bid functions bi (·; s,R, F ) depend on the bidders’ signal as well as the auction format and the
reserve prices R and supply distributions F chosen by the seller. When there is no risk of confusion, when
referring to the bids on the equilibrium path we sometimes suppress the seller’s choices.
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while retaining some randomness to ensure that bidders submit aggressive bids. The con-
struction of such equilibria relies on the value space being rich in the following sense: the set
{s : v(Q?/n; s) > R?} has positive probability for all deterministic supply and reserve pairs
(Q?, R?) that maximize monopoly revenue,

(Q?, R?) ∈ arg max
Q,R

RE
[
nv−1 (R; s)

∣∣∣v (Q/n; s) < R
]

Pr (v (Q/n; s) < R)

+QE [v (Q/n; s)|v (Q/n; s) ≥ R] Pr (v (Q/n; s) ≥ R) . (5)

Richness formalizes the idea that the seller could raise more revenue if they knew more about
the bidders. It is a generic condition that rules out the complete information case, which we
discuss separately in Corollary 6.

Lemma 1. [Quantity and Reserve in Uniform Price] Suppose the value space is rich
and let R?PAB and Q?PAB be optimal reserve and supply in the pay-as-bid design game. There
is ε > 0 such that for all reserve prices R ∈ [R?PAB−ε, R?PAB +ε] and all supply distributions
F with support in [Q?PAB − ε,Q?PAB + ε], there is a perfect Bayesian equilibrium of the
uniform-price design game in which the designer selects reserve R and supply distribution
F .

The proof builds on the construction of two equilibria classes:

• Robust equilibrium, defined as a profile of strategies that is an equilibrium for all
distributions of supply; the existence and uniqueness of such an equilibrium follows
from Klemperer and Meyer [1989]; and

• Semi-truthful equilibria, defined as equilibria at which bUPA(QR
/n; s) = v(QR

/n; s).

Appendix G.1 constructs both these equilibria classes and shows that, under the richness
assumption, the expected revenue from the robust equilibrium following any reserve and
supply distribution is strictly lower than (and bounded away from) the expected revenue
from a semi-truthful equilibrium following reserve R?PAB and deterministic supply Q?PAB.
The perfect Bayesian equilibrium implementing reserve R and supply distribution F is then
constructed as follows. If the seller sets R and F then, in the continuation game, bidders play
the constructed semi-truthful equilibrium. If the seller sets different reserve or different dis-
tribution of supply then, in the continuation game, the bidders play the robust equilibrium,
which has comparatively low bids. As ε goes to 0, the expected revenue in the semi-truthful
continuation equilibrium approximates that in the semi-truthful continuation equilibrium
following reserve R?PAB and supply Q?PAB. As the difference between the expected revenue
in robust and semi-truthful equilibria following R?PAB and Q?PAB is bounded away from zero,
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for all R and F within sufficiently small ε of R?PAB and Q?PAB (respectively), the expected
revenue from setting R and F is strictly higher than the revenue from any other reserve and
supply distribution.

5.2 Revenue Comparisons

For the pay-as-bid auction, Theorem 2 states that equilibrium bids are essentially unique
conditional on the distribution of supply, which allows us to conclude that equilibrium rev-
enue is unique in the pay-as-bid design game. Taking into account Theorem 5, we conclude
that:

Corollary 4. [Revenue in Pay-as-Bid Design Game] In the pay-as-bid design game,
the perfect Bayesian equilibrium revenue is uniquely determined and the seller can achieve
it by setting optimal deterministic supply.

Revenue analysis of the uniform-price design game is more complicated: as we have
seen in the previous subsection randomness might be optimal on the path of a particular
equilibrium. Despite this we show in Lemma 16 in Appendix G that the maximum revenue
in uniform-price design game is obtained in a perfect Bayesian equilibrium in which the seller
sets the same reserve price and deterministic supply as in revenue-maximizing pay as bid. In
consequence, any equilibrium of the uniform-price game generates weakly less revenue than
the unique expected revenue in any equilibrium of the pay-as-bid design game.

Theorem 7. [Revenue Comparison of Design Games] The expected revenue of the
pay-as-bid design game is weakly greater than the expected revenue in any perfect Bayesian
equilibrium of the uniform-price design game.

The revenue comparison is strict for all uniform-price equilibria in which bidders are not
semi-truthful. The non-semitruthful equilibria are typical in the sense that in the uniform-
price auction, for any reserve R, supply distribution F , and signal s, the set of prices at
maximum supply QR that are supportable in equilibrium is the interval [R, v(QR(s)/n; s)].
In particular, robust equilibria are not semi-truthful and the ranking of pay as bid and
uniform price becomes strict for robust equilibria. At the same time, there is a semi-truthful
equilibrium of the uniform-price design game that generates the same expected revenue as
the unique equilibrium revenue of the pay-as-bid design game. The theorem and these claims
remain valid for any deterministic distribution of supply; for their proofs see Appendix G.

Theorem 7 implies that in the auction design game in which the designer chooses either
a pay-as-bid or uniform-price format, and its reserve price and supply distribution, the seller
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will either implement a pay-as-bid auction or, expecting the bidders to bid semi-truthfully
in uniform price, is indifferent between the two formats.

Corollary 5. [Revenue Equivalence across Perfect Bayesian Equilibria] All perfect
Bayesian equilibria of the auction design game are revenue equivalent. Furthermore, the
seller either implements a pay-as-bid auction or is indifferent between the pay-as-bid and
uniform-price auctions.

Finally, when the seller has access to the bidders’ information at the time the auction
is designed, the optimal pay-as-bid auction is outcome-equivalent to simply posting the
monopoly-optimal price. Because posting the monopoly-optimal price is also feasible in
the uniform-price auction, it follows that when there is symmetric information between the
buyers and the seller, the pay-as-bid and uniform-price formats are revenue equivalent when
optimally designed.

Corollary 6. [Revenue Equivalence with an Informed Seller] When the buyers’ signal
s is known to the seller, then the optimally designed uniform-price auction has a unique
equilibrium, and this equilibrium is revenue-equivalent to the optimal pay-as-bid auction.

5.3 Revenue Comparison Example

The following example illustrates revenue-maximizing designs in pay-as-bid and uniform-
price auctions, the equilibria of these designs, and the revenue difference between them.
This example also illustrates how our results can be applied to make the analysis of pay-as-
bid and uniform-price auctions tractable.

Consider n bidders who commonly observe a signal s, drawn uniformly from an interval
[s, s] ( (0,+∞); the bidders’ marginal values are linear, v(q; s) = s − ρq. Our optimal
transparency result (Theorem 5) says that the optimal pay-as-bid auction consists of deter-
ministic supply Q?PAB and a reserve price R?PAB which solve a classical monopoly problem,
and thus

Q?PAB =
(

3s+ s

8ρ

)
n, R?PAB = s+ 3s

8 .

In this optimal auction, the equilibrium bids are essentially unique ((2)), each bidder wins the
per-capita supply Q?/n, and our general bid construction (Theorem 3) takes a particularly
simple form: the bids are flat up to per-capita supply and equal to each bidder’s true marginal
value v(Q?/n; s) at per-capita supply (cf. also Theorems 1 and (4)).

Determining an optimal uniform-price auction is hampered by equilibrium multiplicity,
since bidders’ choice of equilibrium may depend on the parameterization of the auction. We
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Figure 5: Bids in optimal pay-as-bid and uniform-price auctions, with n ∈ {10, 30} bidders.
The horizontal dotted lines represent each auction’s optimal reserve price and the vertical
dotted lines represent each auction’s optimal per capita quantity. In the pay-as-bid panels, we
draw equilibrium bids that are slightly above values for a barely visible interval of quantities
to the right of per-capita supply. Bids beyond the optimal per capita quantity or below the
optimal reserve price are irrelevant to equilibrium payoffs and are only partially determined:
bids below reserve can be arbitrary and bids beyond the maximum quantity sold can be
arbitrary as long as they are sufficiently aggressive.

28



n 10 20 30 40
E [πUP] /E [πPAB] 97.30% 97.30% 97.89% 98.39%

Table 1: Equilibrium expected revenue in the optimal uniform-price auction, as a fraction
of expected revenue in the optimal pay-as-bid auction, by number of bidders.

focus on the unique robust equilibrium [Pycia and Woodward, 2023a] whose existence is es-
sentially unaffected by perturbations of supply (cf. Section 5.1); this approach was pioneered
by Klemperer and Meyer [1989] and became the basis for subsequent theoretical literature
focusing on environments in which robust equilibria take a linear form, cf., e.g., Ausubel
et al., 2014. Unlike the pay-as-bid auction, in which optimal supply and reserve operate
essentially independently—bidders either receive their demand at the reserve price, or pay
their marginal value for the supplied quantity—in a robust equilibrium of the uniform-price
auction the reserve price shifts the bids of all bidders, even those who (in equilibrium) pay
above the reserve price. We find the optimal uniform-price auction numerically. Equilibrium
bids in the optimal pay-as-bid and uniform-price auctions are depicted in Figure 5 for two
realizations of the bidders’ signal, one implying high marginal values and high bids, and one
implying low marginal values and low bids. Comparison of the plotted bids across different
levels of competition (n = 10 in the top row and n = 30 in the bottom row) illustrates
how the optimal auction depends on the number of bidders: the optimal reserve and per-
capita quantity in pay-as-bid auction do not depend on the number of bidders (as implied
by our result that designing pay as bid reduces to a monopolist’s problem); on the other
hand, the optimal reserve and per-capita quantity in uniform-price auction both increase as
competition decreases. In particular, in uniform price with n = 10 bidders a reserve price is
sufficient for revenue maximization; that is, the optimal per-capita quantity is so high that
no quantity cap is required. In consequence, the bids in optimal pay as bid do not depend
on the number of bidders (keeping the per capita supply constant) while in uniform price
the bids increase with competition.

As we show in our Theorem 7 and illustrate in Table 1 above, the optimal pay-as-
bid auction yields more revenue than the optimal uniform-price auction. This difference
goes to zero as the number of bidders goes to infinity (an insight established by Swinkels,
2001), but as the present example shows for realistically-sized markets the difference may be
substantial.42

42The government debt auctions in Table 2 are attended by between 12 and 35 bidders. U.S. Treasury
auctions, for example, have around 25 bidders; Chinese auctions are an outlier attended on average by 35
bidders. In some contexts there are more bidders, e.g., the largest auctions we found, the 2007 European
liquidity auctions, were attended by around 340 bidders.
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6 Relationship to Literature and Empirical Findings

An extensive empirical literature studies the use of the pay-as-bid and uniform-price auctions
in real-world settings. Our model and main results correspond to empirical features observed
across these studies. First, while empirical work provides no clear guidance on which of the
pay-as-bid or uniform-price auction formats raises greater expected revenue in general, Table
2 shows that, across studies where supply randomness is reported, pay as bid dominates
when supply randomness is small. This observation is consistent with our transparency
result (Theorem 5), which shows that when supply is deterministic the pay-as-bid auction
raises strictly greater revenue than all but the seller-optimal equilibrium of the uniform-price
auction (a result whose robustness to the presence of asymmetric information we verify in
the supplementary note Pycia and Woodward [2023a]).

An important prediction of our model is that bids are approximately flat when outcomes
are relatively certain (Corollary 2); conversely, when outcomes are relatively uncertain bid-
ders will hedge against low allocations by bidding more aggressively for low quantities. Given
a bidder’s uncertainty, flatness is a property of best-responses and does not hinge on the bids
being in equilibrium. We can use this prediction to test the validity of the assumption that
bidders are approximately symmetrically informed. Bid flatness has been observed in empir-
ical analyses of European liquidity pay-as-bid auctions prior to the crisis of 2007 [Cassola,
Hortaçsu, and Kastl, 2013], as well as Canadian [Hortaçsu and Sareen, 2005], South Ko-
rean [Kang and Puller, 2008], Chinese (Barbosa et al., 2020, and Yoshimoto, 2021, private
communication), and Polish (Marszalec, 2017, and Marszalec, 2021, private communica-
tion) pay-as-bid treasury auctions, indicating that bidders face little relevant asymmetric
information or other uncertainty in these auctions.43 Another natural test of the symmetry
assumption is the difference between auction price and the subsequent secondary clearing
price; this difference is small in auctions for which we found data (on average 0.04% of the
clearing price in Finnish auctions studied by Keloharju, Nyborg, and Rydqvist [2005], and on
average 0.09% of the clearing price in U.K. Conventional Gilt auctions (own calculation)).44

43The New York Times [1929] reports that flat bids were observed in pay-as-bid U.S. Treasury auctions
as early as the 1920s. The yield tail—the difference between the average accepted yield and the auction
clearing yield—in U.K. Conventional Gilt auctions between March 2021 and March 2023 was 1.14bp (own
calculation), consistent with relevant bids being flat. In addition, Hortaçsu, Kastl, and Zhang [2018] observe
flat bids in uniform-price U.S. Treasury auctions. In some countries, the bids for small quantities are higher
than the substantively flat bids for all other quantities; the higher bids have negligible impact on bidders’
payoffs.

44We apply Keloharju, Nyborg, and Rydqvist’s methodology to U.K. Conventional Gilt sales between
March 2021 and March 2023 for which the clearing price is available. Note that, unlike the gap between
clearing prices in the primary and secondary markets, even a slight amount of asymmetric information might
induce significant asymmetries in bidders’ ex post allocations. Hence the presence of such asymmetries
would not falsify the (nearly) symmetric information assumption. As we prove in our companion note Pycia
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Paper Data Method σ/µ #Bidders Conclusion
Marszalec [2017] Poland PAB → CF UP 0.00% 12.3 PAB > UP

Barbosa et al. [2020] China Controlled exp. 0.00% 35.2 PAB ≈ UP
Février, Préget, and Visser [2002] France PAB → CF UP 1.27% 20.8 PAB > UP

Armantier and Sbaï [2006] France PAB → CF UP 3.78% 19.0 UP > PAB
Hattori and Takahashi [2022] Japan Natural exp. 11.00% no data PAB > UP

Umlauf [1993] Mexico Natural exp. 11.16% 24.7 UP > PAB
Mariño and Marszalec [2020] Philippines Natural exp. 17.60% 20.3 PAB > UP

Table 2: Natural experiment, controlled experiment, and counterfactual (“CF”) revenue
comparisons between pay-as-bid (PAB) and uniform-price (UP) government debt auctions;
σ/µ is the standard deviation of noncompetitive demand scaled by mean aggregate supply.

Our revenue-comparison results (Theorem 3 and Proposition 2) imply that, in large
competitive markets, pay as bid and robust bids in uniform price will raise similar revenue,
while in smaller markets pay as bid is likely to be revenue dominant.45 This implication
is broadly consistent with the observation that large countries such as the U.S. often rely
on uniform price for their treasury auctions, while smaller countries tend to rely on pay as
bid; see the multi-country surveys of treasury auctions in Brenner, Galai, and Sade [2009]
and OECD [2023] (cf. footnote 1). Of course, our predictions are only a baseline, and the
auctioneer may be interested in outcomes beyond revenue.

Our Corollary 5 provides an explanation of the empirical finding that revenues in pay as
bid are close to the counterfactual revenues in uniform price.46 The explanation is twofold.
First, the corollary shows that a revenue-maximizing seller weakly prefers the uniform-price
format only if this format is equivalent to pay as bid. The South Korean Treasury auctions
studied by Kang and Puller [2008] and U.S. Treasury auctions studied by Hortaçsu, Kastl,
and Zhang [2018] run the uniform-price format and hence the corollary provides a potential
explanation of the revenue equivalence found in these papers. Second, the optimal pay-as-bid

and Woodward [2023a], such asymmetries have no substantive impact on revenue or the choice of revenue-
maximizing mechanism; in particular, the approximate analogue of revenue-equivalence Corollary 5 continues
to hold.

45In our supplementary note [Pycia and Woodward, 2023a] we provide a large market revenue equivalence
result, consistent with earlier large market results, cf. Swinkels [2001]. Our bid representations go further by
making explicit the dependence of bids on the number of bidders (cf. Corollary 3). Recall also the example
from Section 5.3, in which the revenue advantage of pay as bid diminishes with the number of bidders.

46The revenue comparison attracted substantial attention in the empirical literature, with Hortaçsu and
McAdams [2010] and Barbosa et al. [2020] finding no statistically significant differences in revenues, Février,
Préget, and Visser [2002], Kang and Puller [2008], Armantier and Lafhel [2009], Marszalec [2017], Mariño
and Marszalec [2020], and Hattori and Takahashi [2022] finding slightly higher revenues in pay as bid, and
Goldreich [2007], Castellanos and Oviedo [2008], Armantier and Sbaï [2006], and Armantier and Sbaï [2009]
finding slightly higher revenues in uniform price. Hortaçsu, Kastl, and Zhang [2018] argue that the revenues
are similar because not much surplus is retained by bidders.
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and uniform-price auctions generate the same revenue only in the seller-optimal equilibrium
of the uniform-price auction and this is precisely the equilibrium in which bids are equal to
marginal values at realized quantities. The latter equality is imposed in counterfactual rev-
enue estimation of uniform-price auctions in Hortaçsu and McAdams [2010] and Marszalec
[2017] which assume truthful bidding in the uniform-price auction; as these papers discuss,
the imposed assumption results in an upper bound on uniform-price revenue. The counter-
factual assumption of truthful bidding in the uniform-price auction is likely to bias expected
revenues upwards when supply randomness is high as implied by the equilibrium analysis of
Klemperer and Meyer [1989]; when supply randomness is low pay as bid is approximately
revenue equivalent to semi-truthful bidding in uniform price. The theory thus suggests that
the empirical ambiguity of cross-mechanism revenue comparison might be tied to sellers’
endogenous selection of auction format and to the counterfactual strategy selection in the
empirical literature.

In addition to providing explanations for empirical regularities, our results contribute to
the theory of multi-unit auctions. Our bound on equilibrium prices is the first such bound
that applies to all pure-strategy equilibria, as well as the first such bound that allows for
mixed-strategy equilibria.47 The special cases of our bound are implicit in the constructions
of linear equilibria in environments with linear demand and Pareto distribution of supply
that we discuss below.

There is a large literature on equilibrium existence in pay-as-bid auctions. In our
symmetric-information environment, Holmberg [2009] proves the existence of equilibrium
when the distribution of supply has a decreasing hazard rate, and recognizes the possibil-
ity that pure-strategy equilibrium may not exist.48 Our more general sufficient condition
for existence encompasses Holmberg’s. In asymmetric information settings, Athey [2001],
McAdams [2003], and Reny [2011] show that equilibrium exists in multi-unit (discrete) pay-
as-bid auctions, and Woodward [2019] establishes existence in the asymmetric-information
analogue of the divisible-good model we study. The presence of private information al-
lows the purification of mixed-strategy equilibria; such purification is not possible in the
symmetric-information setting. 49

Less has been known about uniqueness. Under parametric assumptions of linear utilities
and unbounded Pareto distributions, Wang and Zender [2002] prove the uniqueness of sym-

47A different bound, in terms of competitive markets, was obtained by Swinkels [1999] for large economies.
Our bound is valid in all finite markets.

48See Genc [2009] and Anderson, Holmberg, and Philpott [2013] for discussions of potential problems with
equilibrium existence.

49For equilibrium existence in multi-unit auctions, see also Břeský [1999], Jackson et al. [2002], Reny and
Zamir [2004], Jackson and Swinkels [2005], McAdams [2006], Armantier, Florens, and Richard [2008], Břeský
[2008], and Kastl [2012].
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metric equilibria with bids piecewise continuously-differentiable in quantity and such that
supply is invertible from equilibrium prices. In a linear-Pareto environment in which the
maximum supply strictly exceeds the maximum total quantity the bidders are willing to
buy, Holmberg [2009] proved the uniqueness of symmetric equilibria in which bid functions
are twice differentiable.50 Ewerhart, Cassola, and Valla [2010] and Ausubel et al. [2014]
expand these analyses to Pareto supply with bounded support and show the uniqueness of
equilibria in which bids are linear functions of quantities. In contrast, we look at all Bayesian
Nash equilibria of our model, we impose no parametric assumptions, and we do not require
that some part of the supply is not wanted by any bidder.51 Our uniqueness result is also
related to Klemperer and Meyer [1989] who establish uniqueness in a duopoly model closely
related to uniform-price auctions: when two symmetric and uninformed firms face random
demand with unbounded support, then there is a unique equilibrium in their model.52

Our bid representation theorem may be seen as a finite-market counterpart of Swinkels
[2001], who studies pay-as-bid and uniform-price auctions in large markets; in the limit,
as the number of bidders goes to infinity, our representations are equivalent.53 He restricts
attention to equilibria that are asymptotically environmentally similar, an assumption we do
not impose. Our contribution also lies in establishing the representation of bids as averages
of marginal values in all finite markets and not only in the limit. Holmberg [2009] derives
a closed-form representation for symmetric and smooth equilibria subject to constraints on
supply. We make no such assumptions, and instead prove that equilibria are symmetric
and smooth; our results therefore provide support for his analysis and our finite-market

50Holmberg’s assumption that bidders do not want to buy part of the supply represents a physical con-
straint in the reverse pay-as-bid electricity auction he studies: in his paper bidders supply electricity and face
capacity constraints, and beyond a certain level they cannot produce more. This low-capacity assumption
drives the analysis and it precludes directly applying the same model in the context of securities auctions in
which bidders are willing to buy more when the price is sufficiently low.

51As a consequence of this generality, we need to develop a methodological approach which differs from
that of the prior literature. McAdams [2002] and Ausubel et al. [2014] have also established the uniqueness
of equilibrium in their respective parametric examples with two bidders and two goods.

52With bounded randomness, Wilson [1979] shows that uniform price may admit multiple equilibria; no
similar equilibrium multiplicity has been established for pay as bid (Cole, Neuhann, and nez [2018] show
that pay as bid may induce equilibria that differ in how many bidders acquire information prior to the
auction). The analogue of Klemperer and Meyer [1989]’s unbounded support assumption is our assumption
that the support of supply extends all the way to no supply. While the two assumptions look analogous
they have different practical implications. In a treasury auction, a seller can guarantee that with some small
probability the supply will be lower than the target; in fact, in practice the supply is often random and our
support assumption is satisfied. On the other hand, it might be impossible for the seller to guarantee the
chance of sufficiently large supplies. The proof of our uniqueness result follows a differential analysis familiar
from uniqueness results for first-price auctions (see, e.g., Lizzeri and Persico [2000], Maskin and Riley [2003],
and Lebrun [2006]), but our analysis establishing the unique initial condition for the differential analysis is
distinct.

53For large-market behavior of uniform price see also, e.g., Vives [2011].
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representation of bids as weighted averages of marginal values is new.
Our bid representation is surprising in the context of prior finite-market literature, which

can be naturally read as suggesting that pay-as-bid equilibria are complex. Prior construc-
tions of finite-market equilibria focused on the setting in which bidders’ marginal values are
linear in quantity and the distribution of supply is some instance of the generalized Pareto
distribution; see Wang and Zender [2002], Federico and Rahman [2003], Hästö and Holmberg
[2006], Holmberg [2009], Ewerhart, Cassola, and Valla [2010], and Ausubel et al. [2014].54

This literature expressed equilibrium bids in terms of the intercept and slope of the linear
demand and the parameters of the generalized Pareto distribution. Our general treatment
avoids the complexity inherent in expressing bids in terms of parameters of the functional
forms studied in the earlier literature.55

Our transparency result—that deterministic selling strategies are optimal—may appear
familiar from the no-haggling theorem of Riley and Zeckhauser [1983]. However, in multi-
object settings the reverse has been shown by Pycia [2006] and Manelli and Vincent [2006];
and, as we show in our Lemma 1, nondeterministic supply may have a role in uniform-price
auctions. Furthermore, there is a subtlety specific to pay as bid that might suggest a role
for randomization: by randomizing supply below the monopoly quantity, the seller forces
bidders to compete and bid more for these quantities, and in pay as bid the seller collects
the raised bids even when the realized supply is near the monopoly quantity. We show that,
despite these considerations, committing to deterministic supply is indeed optimal.56

Our full-disclosure result may at first glance appear to be a consequence of Milgrom
and Weber’s [1982] celebrated linkage principle; the linkage principle is however known to
fail in the multi-unit auction context (cf. Perry and Reny [1999] and Vives [2010]) and
our disclosure result relies instead on our bound on revenues in pay-as-bid auctions with
random supply. Thus our full disclosure result relies on the specifics of the pay-as-bid
format.57 Our full-disclosure result also contributes to the literature on Bayesian persuasion

54We focus our discussion on settings with decreasing marginal utilities; for constant marginal utilities see
Back and Zender [1993] and Ausubel et al. [2014].

55The difficulty in constructing an equilibrium in pay as bid is two-fold. In equilibrium, each bidder
responds to the stochastic residual supply (that is, the supply given the bids of the remaining bidders)
and, in determining her best response, a bidder needs to keep in mind that: (i) A bid that is marginal if a
particular residual supply curve is realized is paid not only when it is marginal, but also in any other state
of nature that results in a larger allocation, and hence the bidder faces tradeoffs across these different states
of nature; and (ii) Bid curves need to be weakly decreasing in quantity, potentially a binding constraint.

56Recently Chen et al. [2019] show that individual outcomes of a given random mechanism can be replicated
by a deterministic mechanism when there are multiple privately informed participants, while we show that not
only can the maximal revenue generated by any random pay-as-bid auction be obtained by some deterministic
mechanism, but also that this is possible without fundamentally changing the auction mechanism.

57In single-unit auctions bidders necessarily have full information regarding the quantity supplied, and the
auctioneer’s role in information design is inherently limited. Fang and Parreiras [2003], Ganuza [2004], and
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and information design. Following Kamenica and Gentzkow [2011], this literature focuses
on problems in which optimal designs withhold some information; however, Kamenica and
Gentzkow show that full disclosure is optimal if sender’s expected utility is convex in the
sender’s and receiver’s common belief.58 While we study a seller/sender who is able to
commit to a disclosure strategy, our disclosure result implies that a sender who is ex ante
unable to commit would also fully reveal supply information.59

Prior analyses of the design of multi-unit auctions has focused on preventing collusive
equilibria in uniform price. Fabra [2003] and Marszalec, Teytelboym, and Laksá [2020] show
that collusion is easier in uniform price than in pay as bid. Klemperer and Meyer [1989] point
out that the auctioneer can induce competition in a uniform-price auction by introducing
slight randomness in supply, Kremer and Nyborg [2004] look at the role of tie-breaking rules,
LiCalzi and Pavan [2005] and Burkett and Woodward [2020b] at elastic supply, McAdams
[2007] at commitment, and Burkett and Woodward [2020a] at the role of price selection. By
proving equilibrium uniqueness for pay as bid we show its resilience to equilibrium collusion,
thus providing a pay-as-bid counterpart for this literature.60 We also contribute to the
uniform-price literature directly by showing that not only the seller but also the bidders
might be made worse off by the possibility of tacit collusion; the reason is that the seller who
expects a collusive equilibrium in uniform-price auction might optimally respond by setting
a high reserve price, thus recovering some of the revenue at the cost of bidders’ surplus.

Our revenue and welfare comparisons between pay-as-bid and uniform-price auctions con-
tribute to the debate on the pros and cons of these two formats. We discuss above how our
results align with empirical regularities. Theoretical comparisons include Swinkels [2001]

Board [2009] study the limits of the linkage principle and the resulting benefits of information withdrawal
or obfuscation; Bergemann and Pesendorfer [2007] show that the optimality of obfuscation generally obtains
in setting in which the participation constraints are interim and the seller cannot charge for information.
Even if the seller can charge for information, obfuscation is shown to be optimal by Li and Shi [2017] except
under orthogonality assumptions of Eső and Szentes [2007]. Bergemann, Brooks, and Morris [2017] and
Bergemann, Brooks, and Morris [2019] find that withholding information in single-unit auctions may be
optimal when the auctioneer is concerned about worst-case equilibrium selection. For analysis of bidders’
investment in information acquisition in auctions see e.g. Persico [2000] who finds that bidders in first-price
auctions acquire more value-relevant information than bidders in second-price auctions.

58Kamenica and Gentzkow [2011] show that this convexity occurs in natural examples when the conflict of
interest between the sender and receiver is small enough. Full disclosure is also optimal in the environment
of Crawford and Sobel [1982] provided the sender can ex ante commit to disclosure policy. In the context
of monopoly pricing, the optimality of full disclosure has been studied by, e.g., Lewis and Sappington [1994]
and Johnson and Myatt [2006]; for other settings, cf. e.g., Ivanov [2013], Catonini and Stepano [2023], Li,
Song, and Zhao [2023], and Kolotilin, Corrao, and Wolitzky [2024].

59In related environments, Grossman and Hart [1980] and Milgrom [1981] show how equilibrium forces can
lead to full disclosure of hard information without commitment, while Dye [1985] and Madarasz and Pycia
[2023] show why usually they do not.

60Relatedly, the empirical analysis of Häfner [2020] suggests that there is no collusion in the Swiss import
permit pay-as-bid auctions.
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and Jackson and Kremer [2006]; the former studies equilibria satisfying an asymptotic envi-
ronmental similarity assumption and shows that pay as bid and uniform price are revenue-
and welfare-equivalent in large markets, and the latter find revenue- and welfare- equivalence
in large market limit under the assumption that the proportion of supply to the number of
bidders vanishes to zero. In contrast, our equivalence result does not rely on the size of the
market, nor on an environmental similarity assumption, nor on extreme competition among
bidders. In finite markets, Wang and Zender [2002] find pay as bid revenue superior in the
equilibria of the complete-information linear-Pareto model their consider, and Woodward
[2021] extends this dominance to mixed-price combinations of pay-as-bid and uniform-price
auctions. Ausubel et al. [2014] show that—with ex-ante asymmetric bidders with flat de-
mands—either format can be revenue superior.61 Each of these revenue comparisons of pay
as bid and uniform price has focused on fixed supply distributions and allowed for neither re-
serve price nor supply optimization. Indeed, the finite-market studies of pay-as-bid auctions
with decreasing marginal values employed parametric specifications that did not support the
analysis of design questions; thus they could not address whether a well-designed pay-as-bid
auction is preferable to a well-designed uniform-price auction. In contrast, we allow seller’s
optimization.

7 Conclusion

We study multi-unit auctions in an environment in which bidders have symmetric informa-
tion, but the seller (or auction designer) might have different information. For pay as bid,
we establish equilibrium uniqueness, provide a tractable representation of bids, and show
that equilibrium exists under realistic assumptions. We hope that the tractability of our
representation will stimulate future work on this important auction format.

Leveraging our equilibrium results, we analyze the design problem faced by a revenue-
maximizing seller. We establish that optimal pay-as-bid auctions have deterministic supply
and generate more revenue than uniform-price auctions, and strictly more revenue than
generic uniform-price equilibria. We also establish revenue equivalence between revenue-

61When bidders have symmetric or non-flat demands, pay as bid is revenue superior in all examples they
consider. The special supply distributions these papers consider are not revenue-maximizing, hence there
is no conflict between their strict rankings and our revenue comparisons. See also Jackson and Kremer
[2006] and Fabra, von der Fehr, and Harbord [2006] who find that—with non-optimized supply—either
format can be revenue superior, and Anwar [1999] and Engelbrecht-Wiggans and Kahn [2002] for revenue
comparisons with flat demands. Fabra, Fehr, and De Frutos [2011] show that the two formats may lead
to the same investments in capacity. Hinz [2004] shows revenue equivalence in multi-unit auctions with
single-unit demand. Our companion note, Pycia and Woodward [2023a], finds that for uniform price to raise
significantly more revenue than pay as bid, bidders must be significantly asymmetric.
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maximizing pay-as-bid auctions and revenue-maximizing equilibria of uniform-price auc-
tions. This revenue equivalence benchmark—which we prove both for optimally-designed
auctions and for deterministic supply—provides an explanation for the empirical findings of
approximate revenue equivalence between the two formats. Welfare comparisons are inher-
ently ambiguous and sometimes optimal pay-as-bid auctions are not only revenue- but also
welfare-superior to uniform-price auctions.

In our supplementary note Pycia and Woodward [2023a], we show that our design results
are robust to the presence of small informational asymmetries among bidders. An analogue
of Theorem 1 also continues to hold in asymmetric information environments (see below),
and we use it to bound the revenue differences in the pay-as-bid auction between symmetric
information and asymmetric information environments: analogously to Theorem 7 we show
“approximate revenue dominance” of pay as bid over uniform price in environments with
asymmetric information. Analogously to Corollary 5 we show that a revenue-maximizing
seller would select uniform price only if expecting it to be approximately revenue-equivalent
to pay as bid. The insight that pay-as-bid equilibria in asymmetric information environments
converge to the symmetric information equilibria as the asymmetric information shrinks is
a corollary of Reny [1999].62

In follow-up work [Pycia and Woodward, 2023b] we analyze the problem of efficient
allocation of permits in emissions markets. The dominance of pay as bid over uniform price,
which we establish in a revenue-maximization context in this paper, holds with respect to
surplus maximization as well. Key to this analysis is an extension of Theorem 1 to settings
where bidders may be ex ante and interim asymmetric. Taken together, our work shows
that the pay-as-bid auction format may have several underappreciated advantages over the
uniform-price auction format.
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A Elastic Supply

In the main text we (mostly) focus on pure strategy-equilibria and on designing a potentially
stochastic supply distribution allowing for a separately set reserve price. We now show
that our essential insights remain valid if we allow mixed-strategy equilibria and potentially
stochastic elastic supply curves.

We study a seller who selects a distribution over elastic supply functions. In particu-
lar, this distribution determines the supply-reserve distribution K(Q;R), which defines the
probability that aggregate quantity Q is not supplied at price R. Letting S̃ be the random
supply curve,

K (Q,R) = Pr
(
Q ≥ S̃ (R)

)
.

When the realized supply curve is S, the clearing price in the elastic pay-as-bid auction is

p? = sup
{
p′ : q1 + . . .+ qn ≥ S (p) for all q1, . . . , qn such that b1 (q1) , . . . , bn (qn) ≤ p′

}
.

Each bidder i’s allocation is determined by their demand at the clearing price, rationing
pro-rata on the margin where necessary:

qi (p?) = ϕi (p?) +
ϕi (p?)− ϕi (p?)∑n

j=1

(
ϕj (p?)− ϕj (p?)

)
S (p?)−

n∑
j=1

ϕj (p?)
 .

For perfectly elastic and perfectly inelastic supply, this definition of clearing price and alloca-
tions reduces to the definition from Section 2. Because elastic supply curves can implement
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reserve prices, the definition above (unlike the definition given in the main text) does not
need to explicitly allow for reserves. Conditional on aggregate demand p(·), K(Q; p(Q)) is
the probability that realized aggregate supply is below Q. WhileK is not a c.d.f., it describes
the distribution of feasible aggregate prices and allocations. We impose the mild regularity
assumption that the supply curves are right continuous. In particular, the aggregate quan-
tity distribution is then upper semicontinuous in the reserve price in the following sense:
limRn→RK(Q;Rn) ≤ K(Q;R).63

The following special cases illustrate the supply-reserve distribution K:

• K is equivalent to a random supply distribution F if K(Q,R) = F (Q); here, P̃ is a
random supply curve that is perfectly inelastic at the random aggregate quantity Q̃;

• K is equivalent to a random reserve distribution FR if K(Q,R) = 1− FR(R); here, P̃
is a random supply curve that is perfectly elastic at the random reserve price R̃;

• K is equivalent to joint randomization over aggregate supply and reserve if K(Q,R) =
Pr(Q̃ ≤ Q) + Pr(Q̃ ≥ Q, R̃ ≥ R);

• K is equivalent to deterministic supply curve S if K(Q,R) = 1[S(R) ≤ Q].

The supply-reserve distribution K turns out to be sufficient for analysis because bid-
ders care about supply elasticity only to the extent to which supply elasticity affects the
probability of allocation. By analogy, against a canonical elastic supply curve a buyer can
increase their purchase price to increase the aggregate amount sold; equivalently, increas-
ing their purchase price increases the probability that a higher amount is sold (from, e.g.,
0 to 1). Our main analysis considers the endogenous distribution Gi which represents the
c.d.f. of bidder i’s allocation conditional on opponents’ possibly random bidding strategies
bj(·; ξj). The c.d.f. Gi can be written in terms of K and opponents’ possibly random bidding
strategies bj(·; ξj),

Gi (qi; b) = Eξ

K
qi +

∑
j 6=i

ϕj (b; ξj) , b
 ,

where ϕj (b; ξj) is the analogue of the demand functions ϕj (b) from Section 2 for any deter-
ministic bid (indexed by ξj) in the support of the mixed strategy.

Our existence, uniqueness, and transparency results extend to the above environment.
First note that the existence of mixed-strategy equilibria for any above supply-reserve distri-

63This assumption is satisfied when supply is independent of the reserve or when the distribution K can
be implemented as randomization of deterministic supply curves and each of the supply curves is upper
semicontinuous. This assumption guarantees that a mixed strategy equilibrium exists; see the proof of
Theorem 8 below.
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bution follows from Reny [1999] (see Appendix H for detailed proofs of this and subsequent
results):

Theorem 8. [Pay-as-Bid Mixed-Strategy Equilibrium Existence] For any supply-
reserve distribution, there exists a mixed-strategy equilibrium.

Our analysis of inelastic deterministic supply extends to well-behaved elastic supply.

Theorem 9. [Unique Pay-as-Bid Equilibrium] Given a deterministic elastic supply
curve, there exists a pure-strategy equilibrium in the pay-as-bid auction, and this equilibrium
is essentially unique among all mixed-strategy equilibria.

In the essentially unique equilibrium, all bidders bid their marginal value on the last
allocated unit for all units they receive; they can randomize over their bids on units they do
not receive with no impact on equilibrium outcome.

Perhaps paradoxically, the main difficulty in proving the optimality of deterministic elas-
tic supply lies in establishing this result for the case when the bidders’ common signal, s, is
known to the seller—that is when it takes a constant value with probability 1.

Lemma 2. [Deterministic Dominance when the Seller Knows Bidders’ Signal]
Suppose bidders’ information is known to the seller. Given any supply-reserve distribution
K, there is a deterministic quantity Q? such that the pay-as-bid auction with fixed supply Q?

raises greater revenue than the pay-as-bid auction with supply-reserve distribution K.

We prove this auxiliary complete-information result by studying an auxiliary problem in
which a bidder’s bid satisfies a best-response first order condition but is not necessarily a
best response to the random elastic supply and other bidders’ mixed strategies. We show
that if—counterfactually—the seller was able to set the random supply-reserve distribution
separately for this focal bidder, holding the other bidders’ behavior fixed, then the seller
would optimize this part of the revenue by keeping the quantity allocated to the focal bidder
constant and randomizing only over reserve prices. That is, analyzing constant supply and
random reserve decouples the focal bidder’s best response from strategies of other bidders.
Thus, given the symmetry of the problem, the seller is able to implement such a revenue
maximizing scheme via a pay-as-bid auction with fixed supply and the same random reserve
distribution for all bidders. Leveraging the simplification brought by being able to restrict
attention to random reserve only, we bound the maximum revenue of the seller by the revenue
from pay as bid with deterministic supply and deterministic reserve (and uniform price with
identical supply and reserve).

Having shown that if the seller knew the bidders’ common information, then she can do
no better than set deterministic elastic supply so as to maximize the revenue, it remains to

49



observe that the seller can obtain this revenue pointwise with an elastic supply curve. This
observation relies on the following notion of regularity.

Definition 1. [Regular Demand] Let S = {(p?, q?) : ∃s, p? ∈ arg maxp pv−1(p; s), q? =
v−1(p; s)} be the set of optimal monopoly prices. Bidder values are regular if, for any
(p, q), (p′, q′) ∈ S, the inequality p′ < p implies q′ < q.

Values are regular if the monopolist’s optimal price and quantity are in monotone cor-
respondence. When values are increasing in signal s (an assumption we do not impose),
demand is regular when p+ v−1(p; s)/v−1

p (p; s) is increasing in s. Thus our regularity condi-
tion is similar to the regularity condition in [Myerson, 1981]. When bidder values are regular
the seller can implement optimal reserve and quantity via an elastic supply function even
though the seller does not know the bidders’ information.

Theorem 10. [Deterministic Auctions Are Optimal] When bidder values are regular
then revenue in the pay-as-bid auction is maximized by implementing a deterministic supply
curve. Any mixed-strategy equilibrium of the pay-as-bid auction with any random elastic
supply raises weakly lower revenue than the unique equilibrium of the pay-as-bid auction with
optimal deterministic supply.

Because deterministic elastic supply is not only optimal in pay as bid, but also extracts
the same revenue as if the seller knew bidders’ values (but could only set a price), we can
also conclude the following:

Theorem 11. [Revenue Dominance of Pay as Bid] If bidder values are regular then the
unique equilibrium of the optimal pay-as-bid auction raises weakly more revenue than any
mixed-strategy equilibrium in any uniform-price auction with a supply-reserve distribution.

Furthermore, for a generic distribution of values there are multiple equilibria in uniform
price, and the revenue in a generic uniform-price equilibrium is strictly lower than the revenue
in optimal pay as bid. This last point follows from the underpricing equilibrium constructions
in, e.g.. Back and Zender [1993] and LiCalzi and Pavan [2005].

B Transparency and Noncompetitive Demand

As an application of our analysis, note that multi-unit auctioneers frequently obtain revenue
not only from competitive bidders but also from noncompetitive bidders who pay a fixed
price determined by the auction’s outcome. For example, in France [Agence France Trésor,
2022], the Czech Republic [Ministry of Finance, 2016], and Korea [Ministry of Economics,
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2021] noncompetitive bidders receive supply in addition to the supply that is auctioned
to competitive bidders. When the price paid by noncompetitive bidders is monotone and
continuous in the auction’s clearing price, our Theorem 5 remains valid. We allow the seller
to have an arbitrary belief over the joint distribution of noncompetitive demand Qnc and the
bidders’ signal s.

Corollary 7. [Transparency of Optimal Supply with Noncompetitive Demand]
Suppose that the seller allocates quantity Qnc to noncompetitive bidders at per-unit price
pnc(p?) which is weakly increasing and upper semicontinuous in the clearing price p?. Then
the seller’s revenue from selling to competitive and noncompetitive bidders is maximized by
setting deterministic supply in the auction.

In Corollary 7 we allow noncompetitive demand Qnc to be random. The corollary follows
from inequality (3). Denote by pF (Qc; s) the equilibrium clearing price when the bidders
believe that competitive supply Qc has distribution F , the realized supply is Qc, and bidders’
signal is s; and let pnc(p?) be the price paid by noncompetitive bidders as a function of the
clearing price p?. Considering payments from both competitive and noncompetitive bidders,
the seller maximizes E

[
πF (Qc; s) + pnc ◦ pF (Qc; s)Qnc

]
over F . Inequality (3) provides an

upper bound on competitive revenue, E
[
πF (Qc; s)

]
≤
∫QR

0 Es
[
πδx(x; s)

]
dF (x), and since

bids are below values Theorem 1 implies that, given a realized competitive quantity Qc, the
equilibrium clearing price pF (Qc; s) is lower than the clearing price pδQc (Qc; s) when bidders
with signal s know that competitive supply is Qc. Because pnc is monotone in the clearing
price, the seller’s revenue E

[
πF
]
is bounded above by

∫ QR

0
Es,Qnc

[
πδx (x; s) + pnc ◦ pδx (x; s)Qnc

]
dF (x)

This in turn is bounded above by

max
Q∈[0,QR]

Es,Qnc
[
πδQ (Q; s) + pnc ◦ pδQ (Q; s)Qnc

]
.

The seller can achieve this latter upper bound by setting deterministic supply equal to
arg maxQ∈[0,QR] Es,Qnc

[
πδQ (Q; s) + pnc ◦ pδQ (Q; s)Qnc

]
(where the arg max exists because pnc

is upper semicontinuous and
[
0, QR

]
is compact).

The same argument establishes an analogue of Corollary 7 when pnc is stochastic and
has expectation increasing and upper semicontinuous in the clearing price. Further, the
corollary and its argument remain valid irrespective of whether noncompetitive demand Qnc

is observed by the seller prior to setting F ; that is, Corollary 7 remains valid if we allow Q
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to depend on the realization of Qnc.
As with Theorem 5, Theorem 6—which shows that if the seller cannot affect the distri-

bution of supply, they would still prefer to announce realized supply—extends to the case
where the seller maximizes the total revenue obtained from not only from the allocation to
competitive bidders who submit demand curves, but also from the noncompetitive bidders
with inelastic demand. If noncompetitive demand is independent of aggregate competitive
supply then the argument is analogous to the argument establishing Corollary 7. In practice,
however, the supply available to competitive bidders is the residual of announced supply Q
less the random inelastic demand of noncompetitive bidders. For a seller in this context, it
remains optimal to fully reveal the realization of supply before competitive bids are submit-
ted. In the resulting analogue of Theorem 6, we allow the seller to have an arbitrary belief
over the joint distribution of noncompetitive demand Qnc and the bidders’ signal s provided
that, for any s, the conditional distribution of Qnc is Lebesgue absolutely continuous on
[0, Q] and the auction equilibrium exists (e.g., because the assumptions of Theorem 4 are
satisfied for the residual competitive supply, F (Q; s) = 1− Fnc(Q−Q; s)).64

Corollary 8. [Optimality of Information Disclosure with Noncompetitive De-
mand] Suppose that competitive supply is Q − Qnc. If the seller allocates quantity Qnc

to noncompetitive bidders at price pnc(p?) which is weakly increasing in the clearing price p?,
then the seller’s revenue from selling to competitive and noncompetitive bidders is maximized
when the seller commits to fully-reveal the realization of noncompetitive demand.

The assumption that the per-unit price paid by noncompetitive bidders is increasing in
the clearing price allows for noncompetitive demand to be filled at a fixed price, or at the
clearing price, or at a constant markup over the clearing price (among other possibilities).65

In light of Theorem 6 and the proof of Corollary 7, Corollary 8 is straightforward to prove.
In particular, in this context equation (4) gives us

E
[
πF
]
≤ Es

[
EQnc

[
πδQc(s) (Qc (s) ; s) + pnc ◦ pδQc(s) (Qc (s) ; s)Qnc

∣∣∣s]] ,
where Qc (s) = min{Q − Qnc, v

−1(R; s)}. The seller’s revenue from competitive bidders is
highest when supply is announced before bids are submitted. Moreover, announcing available

64Note that if the seller discloses that Qnc = Q then there is no quantity to sell in the auction; as this
noncompetitive demand realization has probability 0, we can then assume any price for non-competitive
bidders without affecting the result.

65In spot electricity markets in which the non-competitive electricity consumers pay exogenous prices
which depend neither on the bids submitted nor the clearing price in electricity auctions for suppliers, our
Theorem 6 directly implies that the auctioneer wants to reveal the consumers’ demand to the suppliers
bidding in the auction.
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supply weakly increases the clearing price, since relevant bids are strictly below marginal
values except at the maximum feasible quantity (Theorems 1 and 3). Then announcing
the realization of supply increases the expected revenue from competitive bidders, and also
increases the ex post revenue from noncompetitive bidders.

On the other hand, the incentives of noncompetitive bidders, whose bids generate non-
competitive demand, are opposed to those of the auctioneer. The noncompetitive bidders
would (if possible) commit to not reveal their bids prior to the submission of the competitive
bidders’ bids because the revelation of noncompetitive demand weakly increases the clearing
price ex post, in turn increasing the per-unit price paid they pay.

C Welfare Ambiguity

The cross-auction comparison of outcomes other than revenue—e.g., bidders’ payoffs and
expected surplus—depends on the perfect Bayesian equilibrium played in uniform price.

Theorem 12. [Ambiguous Bidder Welfare Comparison] If the value space is rich then
the uniform-price design game admits perfect Bayesian equilibria in which the payoff of all
bidder types is strictly higher and perfect Bayesian equilibria in which the payoff of all bidder
types is strictly lower than in the unique equilibrium of the pay-as-bid design game.

The reason for this ambiguity is that the quantity sold and reserve price in optimal
uniform price can be strictly higher, the same, or strictly lower than in pay as bid, depending
on the equilibrium in uniform price, as we have seen in Lemma 1. If the reserve price R?UP

in the uniform-price design game is strictly lower than the optimal pay-as-bid reserve R?PAB

and the supply Q?UP in uniform price is deterministic and strictly higher than the optimal
pay-as-bid supply Q?PAB, then there is an equilibrium of uniform price in which all bidder
types pay R?UP for each unit they buy their payoffs are strictly higher than in pay as bid. If,
conversely, R?UP > R?PAB and Q?UP < Q?PAB, then there are always bidder types that are
worse off under uniform price than pay as bid, and there is also a continuum of equilibria
in which all bidder types have lower payoffs in uniform-price than in the pay-as-bid design
game.66 In the latter case, for distributions of bidders’ value functions for which the solution

66To see this note that, if the continuation equilibrium of uniform price with supply Q?UP < Q?PAB and
reserve R?UP > R?PAB is semi-truthful, then the resulting payoffs for all bidder types are strictly lower than
in the essentially unique perfect Bayesian equilibrium of pay as bid. There is no contradiction between the
ambiguity reported by Ausubel et al. [2014] and our revenue dominance, nor are our welfare comparisons
implicit in theirs. The welfare ambiguity we uncover is driven by equilibrium selection (under optimal design)
and obtains for all utility specification in every model with rich values. In contrast, Ausubel et al. provide
examples of ambiguity that hinge on comparing equilibria for specific non-optimized supply distributions
and without reserve prices.
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to the monopoly problem (5) is unique (a generic property), the seller’s revenue is also strictly
lower in uniform price. Generically, there are thus equilibria of the uniform-price design that
are strictly worse for all market participants than the essentially unique equilibrium of the
pay-as-bid design game, but not vice versa (cf. Theorem 7).
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“A Case for Pay-as-Bid Auctions”

(For Online Publication)

Marek Pycia and Kyle Woodward

D Proof of Theorem 1 and Auxiliary Lemmas

D.1 Proof of Theorem 1 (Minimum Market Price)

We allow mixed strategies and parameterize bidder i’s mixed strategy by mixing type ξi;
denote by ξ = (ξj)nj=1 the profile of all bidders’ mixing types. As discussed at the beginning
of Section 3, we hold the common signal s fixed and therefore suppress it from notation.
Thus a bid is a function bi : [0, Q]× Supp ξi → R+. Denote Gi(q; bi) = Pr(qi ≤ q|bi); that is,
Gi(q; bi) is the probability that the quantity agent i receives is weakly lower than q (when
submitting bid bi in the equilibrium considered). We focus on the case in which the marginal
values on all relevant units are above the reserve R because otherwise the theorem follows
from v(q; s) ≤ R ≤ bi(q; s) and bi(q; s) ≤ v(q; s), where the latter inequality follows as else
the monotonicity of b and the continuity of v would give bidder i a profitable downward
deviation.

The (essential) minimum clearing price p and (essential) maximum receivable quantity
qi, conditional on strategy profile (bj)nj=1, are defined as follows67

p = ess inf
Q,ξ

p
(
Q;
(
bj (·; ξj)

)n
j=1

)
;

qi (ξi) = ess sup
Q,ξ−

qi
(
Q; bi (·; ξi) , b−i (·, ξ−i)

)
;

bi (ξi) = lim
q↗qi(ξi)

bi (q; ξi) .

We proceed in steps.

Lemma 3. Let (bj)nj=1 be an equilibrium bid profile. If bi(·; ξi) is a best response to (bj)j 6=i
and bi(ξi) < v(qi(ξi)), then qi(ξi) > inf{q : bi(q; ξi) = bi(ξi)};that is, bidder i’s bid is flat in
some left neighborhood of qi(ξi).

67The essential infimum is the highest value a random variable exceeds with probability one,
ess infX f(X) = sup {y : Pr(f(X) ≥ y) = 1}. Similarly, ess supX f(X) = inf {y : Pr(f(X) ≤ y) = 1}.
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Proof. We consider two cases in turn. First, we show that if there is an opponent j whose
bid bj has bounded slope with ξi-positive probability at qj (that is for q < qj(ξj) and close
to qj(ξj), bj(q; ξj)− bj(qj(ξj); ξj) ≤ Mb |q − qj(ξj)| for some Mb ∈ R and mass πj > 0 of ξj),
then bi(ξi) = vi(qi(ξi)). For λ > 0 consider a deviation bλ,

bλ (q) =

b
i (q; ξi) if bi (q; ξi) ≥ bi (ξi) + λ,

bi (ξi) + λ otherwise.

Let q̌λ = inf{q : bi(ξi) + λ > bi(q; ξi)} be the lowest quantity at which the deviation bλ

diverges from bi(·; ξi). For q ∈ [q̌λ, qi(ξi)] let δ(q) = [bi+λ]−bi(q; ξi) be the amount by which
the deviation increases the bid. Since the slope of opponent j’s bid is bounded above by
Mb with probability πj, the extra quantity allocated to bidder i when they deviate to bλ is
at least δ(q)/Mb with probability πj where q is the allocation i would have received bidding
bi(·; ξi) . For the deviation to not be profitable, it must be that the increase in payment is
higher than the utility gain from additional quantities that is

∫ qi(ξi)

q̌λ

∫ q

q̌λ
δ (x) dxdGi

(
q; bi (·; ξi)

)
≥ πjµ

∫ q

q̌λ

δ (q)
Mb

dGi
(
q; bi (·; ξi)

)
,

where µ is a constant bound on the marginal utility of additional quantity; we may assume
µ > 0 since marginal values are Lipschitz continuous. Because both sides are zero at λ = 0
and are differentiable in λ, the above inequality implies the following inequality between the
derivatives with respect to λ of both sides:

∫ qi(ξi)

q̌λ

(
q − q̌λ

)
dGi

(
q; bi (·; ξi)

)
≥ πjµ

Mb

(
1−Gi

(
q̌λ; bi (·; ξi)

))
.

The left-hand side is bounded by

∫ qi(ξi)

q̌λ

(
q − q̌λ

)
dGi

(
q; bi (·; ξi)

)
=
∫ qi(ξi)

q̌λ

(
1−Gi

(
q; bi (·; ξi)

))
dq ≤

(
qi (ξi)− q̌λ

) (
1−Gi

(
q̌λ; bi (·; ξi)

))
.

Then the necessary inequality for bλ to not be profitable implies that for λ > 0 sufficiently
small,

qi (ξi)− q̌λ ≥
µπj
Mb

.

In particular, qi(ξi) > limλ↘0 q̌
λ and the lemma is proven in the first case.

The remaining case is that, for all opponents j 6= i and all bounds Mb, the event that
the slope of bj(·; ξj) at qj(ξj) is bounded above by Mb has ξj-probability zero. Since the bids
of any bidder j are infinitely steep at qj(ξj) while marginal values are Lipschitz continuous,
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it follows that for all opponents j 6= i, bj(ξj) < v(qj(ξj)) with ξj-probability one. By the
previously established case of the lemma, the slope of bi(·; ξ̃i) at qi(ξ̃i) also cannot be bounded
above by any Mb with ξ̃i-positive probability. For bidder j with type ξj, given a quantity
q̌ < qj define a deviation b̌ by

b̌ (q) =

b
j (q; ξj) if q < q̌,

bj (q̌; ξj) otherwise.

Letting δ(q) = bj(q̌; ξj) − bj(q; ξj), the extra expected cost associated with this deviation is
bounded above by

∫ qj(ξj)

q̌

∫ q

q̌
δ (x) dxdGj

(
q; bj (·; ξj)

)
=
∫ qj(ξj)

q̌
δ (q)

(
1−Gi

(
q; bj (·; ξj)

))
dq.

The extra expected utility associated with this deviation is bounded below by

µ
∫ qj(ξj)

q̌
(q − q̌) dGj

(
q; bj (·; ξj)

)
= µ

∫ qj(ξj)

q̌

(
1−Gj

(
q; bj (·; ξj)

))
dq,

where µ is a constant bound on the marginal utility of additional quantity (as above).
Since by definition limq̌↗qj(ξj) b

j(q̌; ξj) = bj(ξj), we infer that δ(q) is arbitrarily small for q̌
sufficiently close to qj(ξj) . Because µ > 0 is constant, for q̌ near qj(ξj) the upper bound of
the expected cost of the deviation is strictly below the lower bound of the expected benefit
of the deviation, hence the deviation is profitable. This contradicts that (bj)nj=1 was an
equilibrium bid profile and shows that the second case of the proof cannot arise, thereby
concluding the proof.

Lemma 4. For every bidder i, in equilibrium Pr(qi(ξi) > inf{q : bi(q; ξi) = bi(ξi)) = 0 (that
is flats in the left neighborhood of qi(ξi) have probability 0).

Proof. Note first that there is at most one bidder for whom Pr(qi(ξi) > inf{q : bi(q; ξi) =
bi(ξi)) > 0, otherwise standard tie-breaking logic implies that each of the (multiple) such
bidders has an incentive to slightly increase their bid at the terminal flat. Then by way of
establishing a contradiction, assume that bidder i is the unique bidder for whom Pr(qi(ξi) >
inf{q : bi(q; ξi) = bi(ξi)) > 0. Then for all of bidder i’s opponents j 6= i, Lemma 3 implies that
Pr(bj(ξj) = v(qj(ξj))) = 1; without loss of generality we assume that bj(ξj) = v(qj(ξj)) for all
opponents j 6= i and all types ξj. Because bidder i submits a flat bid with positive probability
while do opponents do not, each opponent j 6= i receives their maximum allocation qj(ξj) with
strictly positive probability. Thus, for each ξj, we have that limq↗qj(ξj) (1−Gj(q; bj(·; ξj))) >
0 and there is a common lower bound for this limit, which we denote π > 0.
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For bidder j with type ξj, and for q̌ < qj(ξj) and ε >0, define a deviation b̌ by

b̌ (q) =

b
j (q; ξj) if q < q̌,

bj (ξj) + ε if q ≥ q̌.

For ε > 0, bidder j strictly outbids bidder i’s flat bid. Since ε > 0 may be arbitrarily small,
we omit it from the expressions of cost savings. Ignoring the ε payments, this deviation saves
bidder j payment whenever the allocation (under bj(·; ξj)) would have been above q̌, but it
also sacrifices gross utility whenever the allocation (under bj(·; ξj)) would have been strictly
between q̌ and qj(ξj). The cost savings is bounded below by π

∫ qj(ξj)
q̌ δ(q)dq, where δ(q) =

bj(q; ξj)−bj(ξj); the gross utility loss is bounded above by limq↗qj(ξj)
∫ q
q̌

∫ y
q̌ µ(x)dxdGj(y; bj(·; ξj)),

where µ(x) = v(x)− bj(ξj). Since marginal values are Lipschitz continuous, µ(x) ≤ (qj(ξj)−
x)Mv, where Mv is the Lipschitz modulus of marginal values. Then a necessary condition
for the deviation to not be profitable is that

∫ qj(ξj)

q̌
δ (q) dqπ ≤ lim

q↗qj(ξj)

∫ q

q̌

∫ y

q̌
µ (x) dxdGj

(
y; bj (·; ξj)

)
= lim

q↗qj(ξj)

∫ q

q̌
µ (y)

(
[1− π]−Gj

(
y; bj (·; ξj)

))
dy

≤ lim
q↗qj(ξj)

Mv

∫ q

q̌

(
qj (ξj)− y

) (
[1− π]−Gj

(
y; bj (·; ξj)

))
dy.

Since f(·) is continuous and π > 0, this is only possible if limq↗qj(ξj) δ(q)/(qj(ξj) − q) = 0:
that is, if bidder j’s bid has zero slope at qj(ξj).

Thus each of bidder i’s opponents is submitting an asymptotically flat bid bj(·; ξj) near
qj(ξj), with ξj-probability one. It follows that a slight upward deviation by bidder i by some
λ > 0 will be profitable: the deviation has cost bounded by λQ, and gains proportional to
λ/Mb, where Mb > 0, the Lipschitz upper bound on the slope of other bidders at qj(ξj), may
be taken to be arbitrarily small.

When bidder i’s opponents play strategies (bj)j 6=i let BRi be the set of bidder i’s best
responses. Define the closure of the set of bidder i’s best responses to be

ClBRi =
{
b : ∀ε > 0,∀q ≥ 0 ∃b̃ ∈ BRi s.t. Gi (q; b) < 1 =⇒

∣∣∣b (q)− b̃ (q)
∣∣∣ < ε

}
.

To simplify exposition, to any bidding strategy β ∈ ClBRi we assign ξi such that bi(·; ξi) ≡ β.
For such bi(·; ξi) in the closure we are neither requiring that they are best responses nor that
they are part of the mixing by bidder i. Relatedly, we apply the above definitions of qi(ξi)
and bi(ξi) to such bids bi(·; ξi) from the closure.
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Lemma 5. If bi(·; ξi) is in the closure of the set of best responses for bidder i, then bi(ξi) =
v(qi(ξi)).

Proof. Suppose otherwise. Then qi(ξi) < v−1(bi(ξi)). Lemmas 3 and 4 together imply that
with ξ′i-probability 1, bi(ξ′i) = v(qi(ξ′i)) and inf{q : bi(q; ξi) = bi(ξi)} < qi(ξi). Thus bidder
i’s maximum quantity qi drops discontinuously at the limit bi(·; ξi) and the only way this
can happen is if there is some opponent whose bid may be arbitrarily flat. Hence there
is some bidder j 6= i for whom bj(·; ξj) is in the closure of the set of best responses and
qj(ξj) < v−1(bj(ξj)).

Note that either bi(·; ξi) is not a best response, in which case it is played with probability
zero, or it is a best response and by Lemma 4 it is played with probability zero (since bi(ξi) <
v(qi(ξi)); in either case, bi(·; ξi) is played with probability zero. Then since bi(·; ξi) is in the
closure of the support of bidder i’s best responses, for all ε > 0 and all q ∈ (qi(ξi), v−1(bi(ξi)))
(which is non-empty) there is some type ξ′i 6= ξi such that bi(·; ξ′i) ∈ BRi is a best response
to (bj)j 6=i and bi(q; ξ′i) < bi(ξi) + ε and Gi(q; bi(·; ξ′i)) < 1; that is, quantity q is obtainable
with positive probability under bid bi(·; ξ′i), and the bid for this quantity is not too far above
bi(ξi).

For q > qi(ξi), let γ = q − qi(ξi). For type ξ′i to obtain quantity q under bid bi(·; ξ′i)
with bi(q; ξ′i) < bi(ξi) + ε, it must be that some opponent j’s inverse bid at price bi(ξi) + ε

is ϕj(bi(ξi) + ε; ξj) ≤ v−1(bi(ξi)) − γ/(n − 1). Since γ may take any value between 0 and
qi(ξ′i)−qi(ξi), and ε > 0 may be arbitrarily small, it follows that when bidder i wins quantity
q the quantity is won against at least one opponent with an arbitrarily flat bid. That is, as
ε > 0 becomes small the residual supply faced by bidder i becomes infinitely elastic.

Finally, since inf{q̃ : bi(q̃; ξ′i) ≤ bi(ξ′i)} = qi(ξi) and bi(q̃; ξ′i) ≤ v(q̃) for all q̃ ∈ (0, qi(ξi)),
for any ε > 0 there is some q > qi(ξ′i) and type ξ′i such that bi(q̃; ξ′i) > bi(q; ξ′i) for all q̃ < q.
Given such a q and ξ′i, fix λ > 0, define q̌ = sup{q̃ : bi(q̃; ξ′i) ≥ bi(q; ξ′i) + λ} and consider a
deviation bλ given by

bλ (q̃) =

b
i (q̃; ξ′i) if q̃ /∈ [q̌ (λ) , q] ,

bi (q; ξ′i) + λ if q̃ ∈ [q̌ (λ) , q] .

This deviation has costs equal to

∫ qi(ξ′i)
q̌(λ)

∫ min{q̃,q}

q̌(λ)
δ (y) dydGi

(
q̃; bi (·; ξ′i)

)
=
∫ qi(ξ′i)
q̌(λ)

δ (min {q̃, q})
(
1−Gi

(
q̃; bi (·; ξ′i)

))
.

Its benefits are bounded below by
∫ q

q̌(λ)

∫ min{q̃+δ(q̃)/Mb,q}

q̃
v (y) dydGi

(
q̃; bi (·; ξ′i)

)
.
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Because the “inducing the flat” opponent’s bid is arbitrarily flat (for ε small), the benefits
may be bounded below again by
∫ q

q̌(λ)
(q − q̃)µdGi

(
q̃; bi (·; ξ′i)

)
= (q − q̌ (λ))µ

(
1−Gi

(
q̌ (λ) ; bi (·; ξ′i)

))
−µ

∫ q

q̌(λ)

(
1−Gi

(
q̃; bi (·; ξ′i)

))
dq̃.

For λ sufficiently small this deviation is profitable, hence we obtain a contradiction.

Lemma 6. Let (bi)ni=1 be a mixed-strategy equilibrium in which each for each bidder i and
each bid bi(·; ξi) in the support of bidder i’s mixed strategy, bi(·; ξi) is a best response to
(bj)j 6=i. Then, for any signal s and profile ξ of mixing types, the clearing price p

(
Q
R; ξ

)
at

the effective maximum quantity QR is equal to the marginal value for per-capita maximum
supply; that is, p

(
Q
R; ξ

)
= v

(
1
n
Q
R
)
.

Proof. Bids will be below values for all relevant quantities, thus we know that p(QR; ξ) ≤
v(QR

/n; ξ) when mixed strategies are supported by best responses. Now, suppose that there
is a type profile ξ such that p(QR; ξ) < v(QR

/n; ξ). By Lemmas 3 and 4, bi(ξi) = v(qi(ξi); ξi)
for all bidders i with ξi-probability 1, hence p(QR; ξ) < v(QR

/n; ξ) only if there is some
bidder i and bid bi(·; ξ′i) ∈ ClBRi such that p(QR; ξ) < v(qi(ξi)). This contradicts Lemma 5,
hence it must be that p(QR; ξ) = v(QR

/n) whenever (bi(·; ξi))ni=1 is a bid profile where each
bi(·; ξi) is a best response to (bj)j 6=i.

Theorem 1 follows from Lemma 6 because in a mixed-strategy equilibrium, the set of bid
functions bi(·; ξi) in the support of bi which are not best responses to (bj)j 6=i has probability
zero.

D.2 Pure strategy equilibrium derivation with symmetric bidder
information

In this section we present the lemmas for our results on existence, uniqueness, and bid rep-
resentation of pure strategy equilibria under symmetric bidder information. The argument
for deterministic supply was given in the main text, and here we focus on random supply.
As in the main text, to simplify notation we write v(q) in lieu of v(q; s) and bi (q) in lieu
of bi(q; s). Throughout, fix a pure-strategy candidate equilibrium (bi)ni=1 and recall that
bid functions are weakly decreasing and right continuous. Given equilibrium bids the clear-
ing price p (Q) is a function only of realized supply Q. In line with Appendix D.1, denote
Gi(q; bi) = Pr(qi ≤ q|bi), and denote the inverse hazard rate of aggregate supply by H = 1−F

f
.

The following lemmas are about relevant quantities such that Gi(q; bi) < 1. The proofs
of these results do not hinge on what bidders bid for quantities larger than the maximum
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quantity they can obtain in equilibrium; such bids only play a role later, in the proof of
Theorem 4 in Appendix E.3 (cf. also Appendix E.5). Correspondingly, we say that a price
level p is relevant if p is strictly higher than p (defined in Appendix D.1 above) and weakly
below the highest bid. In these proofs the reserve price is not binding at any quantity q < qi,
because the proofs either constrain attention to small deviations at prices strictly above the
minimum market price, or to the bidder’s desire to not be awarded quantities for which their
bid is above their true value.

Lemma 7. For no relevant price level p are there two or more bidders who, in equilibrium,
bid constant value p flat on some non-trivial intervals of quantities.

Proof. The proof resembles similar proofs in other auction contexts. Suppose agent i bids
p on (qi`, qir) and bidder j bids p on (qj`, qjr) and these quantities are relevant. Since
the support of supply is

[
0, Q

]
, it must be that Gi(qir; bi) > Gi(qi`; bi) and Gj(qjr; bj) >

Gj(q`j; bj). Let q̄i = EQ[qi|p(Q) = b(qir)]; without loss of generality, we may assume that
b(qir) = p and agent i is such that q̄i < qir. If vi(q̄i) < bi(qir), the agent has a profitable
downward deviation. The agent also has a profitable deviation if vi(q̄i) ≥ bi(qir): she can
increase her bid slightly on [qi`, qir) (enforcing monotonicity constraints as necessary to the
left of qi`), keeping her bid below value if necessary.

Lemma 8. Bids are below values: bi(q) ≤ vi(q) for all relevant quantities, and bi(q) < vi(q)
for q < ϕi(p(Q)).68

Proof. Suppose that there exists q with bi(q) > vi(q); because bi is monotonic and vi is
continuous, there must exist a range (qi`, qir) of relevant quantities such that bi(q) > vi(q)
for all q ∈ (qi`, qir). The agent wins quantities from this range with positive probability, and
hence the agent could profitably deviate to

b̂i (q) = min
{
bi (q) , vi (q)

}
.

Such a deviation never affects how she might be rationed, by the first part of this proof;
hence it is necessarily utility-improving.

Now consider q < ϕi
(
p
(
Q
))

. If bi(q) = vi(q) then monotonicity of bi and Lipschitz-
continuity of vi imply that for small ε > 0 winning units [q − ε, q] brings per unit profit
lower than Mε, where M is the Lipschitz modulus of v. By lowering the bid for quantities
q′ ∈ [q − ε, q + ε] to b̂i (q′) = min{vi(q) − ε, bi(q′)}, the utility loss from losing the relevant
quantities is at most 2Mε2 (Gi (q + ε; bi)−Gi (q − ε; bi)). Notice that the right-hand proba-
bility difference goes to zero as ε goes to zero. At the same time the cost savings from paying

68By definition, p(Q) = p(QR).
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lower bids at quantities higher than q + ε is (at least) of order ε2. Hence this deviation is
profitable, and it cannot be that bi(q) = vi(q).

Lemma 9. The clearing price p(Q) is strictly decreasing in supply Q on
[
0, QR

]
.

Proof. We show first that the clearing price is strictly decreasing in supply for all Q such
that p(Q) > infQ′ p(Q′) = p. We then show that p is strictly decreasing to the left of QR as
long as for any bidder i residual supply ∑j 6=i ϕ

j(·) has nonzero slope at p. Since Theorem
1 shows that it is without loss of generality to assume that bi(qi) = v(QR

/n; s), Lemma 8
shows that bids are below values, and values are Lipschitz continuous, it follows that residual
supply has nonzero slope at p, and therefore the clearing price is strictly decreasing in Q.

Since bids are weakly decreasing in quantity, the clearing price is weakly decreasing as
a direct consequence of the market-clearing equation. If price is not weakly decreasing in
quantity at some Q, then a small increase in Q will not only increase the price, but will
weakly decrease the quantity allocated to each agent. This implies that total demand is no
greater than Q, contradicting market clearing.

Lemma 7 is sufficient to imply that the clearing price must be strictly decreasing for all
Q such that p(Q) > p: at every price level at which at least two bidders pay with positive
probability for some quantity, at most one of the submitted bid functions is flat (that is there
is an interval of quantities at which the bid equals this price). Furthermore, for no price level
p > p that with positive probability a bidder pays for some quantity, we can have exactly
one bidder, i, submitting a flat bid at price p on an interval of relevant quantities. Indeed, in
equilibrium bidder i cannot benefit by slightly reducing the bid on this entire interval; thus
it must be that there is some other agent j whose bid function is right continuous at price
p. If p = 0, all opponents j 6= i have a profitable deviation. If p > 0, we appeal to Lemma
8. Given that i submits a flat bid and the bids of bidder j are strictly below her values for
some non-trivial subset of quantities at which her bid is near p, bidder j can then profit by
slightly raising her bid; this reasoning is similar to that given in the proof of Lemma 7.

We now show that p(·) is strictly decreasing for all Q. Otherwise, following Lemma 7,
there is a bidder i who is submitting a flat bid at p. Denote the left end of this bidder’s flat
by q

i
= inf{q : bi(q) = p}; by assumption, q

i
< qi. (To see that qi > 0 one might also note

that otherwise bidder i would almost surely receive 0 utility ex post, which is not possible in
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any equilibrium of pay as bid with symmetric bidders). Let ε, λ > 0 and define a deviation

b̂ελ (q) =


bi (q) if bi (q) > p+ λ,

p+ λ if bi (q) ≤ p+ λ and q ≤ q
i
+ ε,

p otherwise.

That is, b̂ελ is bi, with λ added for length ε at q
i
, and adjusting for the fact that bids must

be monotone decreasing. Note that this deviation increases costs by at most (ε + (q
i
−

ϕi(p + λ)))λ, with at most probability one. When qi ∈ [q
i
, q
i
+ ε], it increases the quantity

allocation to (approximately) max{q
i
+ ε, q + λM}, where M is the slope of residual supply

at the minimum price, M =
∣∣∣∑j 6=i ϕ

j
p(p)

∣∣∣.69 Let µ ≡ vi(q
i
+ ε)− (p+λ); since bids are below

values and values are strictly decreasing, µ > 0 when ε and λ are sufficiently small. Then
for the deviation to be nonoptimal, it must be that

(
ε+

(
q
i
− ϕi

(
p+ λ

)))
λ ≥ E

[(
max

{
ε, q + λ

M

}
− q

)
µ

∣∣∣∣∣q ∈ [qi, qi + ε
]]

= E
[(

max
{
ε− q, λ

M

})
µ

∣∣∣∣∣q ∈ [qi, qi + ε
]]
.

Letting Q−i = ∑
j 6=i qj, this can be rewritten as

(
ε+

(
q
i
− ϕi

(
p+ λ

)))
λ
∫ q

i
+ε

q
i

dF
(
q +Q−i

)
≥
∫ q

i
+ε

q
i

max
{
ε+ q

i
− q, λ

M

}
µdF

(
q +Q−i

)
≥
∫ q

i
+ε− λ

M

q
i

µλ

M
dF

(
q +Q−i

)
.

The λ > 0 multipliers cancel; integrating through gives

(
ε+

(
q
i
− ϕi

(
p+ λ

))) (
F
(
q
i
+ ε+Q−i

)
− F

(
q
i
+Q−i

))
≥ µ

M

(
F

(
q
i
+ ε− λ

M
+Q−i

)
− F

(
q
i
+Q−i

))
.

From here the argument is standard. For any ε > 0 there is λ > 0 such that ε− λ/M ≥ ε/2
69Because we are ultimately letting ε and λ go to zero, this approximation is sufficient. Formally, we may

consider M ′ < M and allow δ to be small enough that the slope of residual supply never falls below M ′.
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and q
i
− ϕi(p+ λ) < ε/2. Thus it must be that

3
2ε
(
F
(
q
i
+ ε+Q−i

)
− F

(
q
i
+Qi−i

))
≥ µ

M

(
F
(
q
i
+ 1

2ε−Q−i
)
− F

(
q
i
+Q−i

))

⇐⇒ F
(
q
i
+ ε+Q−i

)
− F

(
q
i
+Q−i

)
≥ µ

3M

F
(
q
i
+ 1

2ε−Q−i
)
− F

(
q
i
+Q−i

)
1
2ε

 .
This must hold for all ε > 0. Because q

i
+ Q−i < Q, supply distribution F is Lebesgue

absolutely continuous near q
i
+Q−i; taking the limit as ε↘ 0 gives

0 ≥
µf

(
q
i
+Q−i

)
3M .

Since f(·) > 0 at q
i
+Q−i, this is a contradiction since M is finite (Lemma 12). In this case,

bidder i has a profitable deviation.

Corollary 9. In any pure-strategy equilibrium, bid functions are strictly decreasing on rele-
vant quantities.

We define the derivative of Gi with respect to b as follows. For any q and bi, the mapping
t 7→ Gi(q; bi + t) is weakly decreasing in t, and hence differentiable almost everywhere. With
some abuse of notation, whenever it exists we denote the derivative of this mapping with
respect to t by Gi

b(q; bi).

Lemma 10. For each agent i and almost every q we have:

Gi
b

(
q; bi

)
= f

q +
∑
j 6=i

ϕj
(
bi (q)

)∑
j 6=i

ϕjp
(
bi (q)

)
.

Proof. By definition, Gi(q; bi) = Pr(qi ≤ q|bi). From market clearing, this is

Gi
(
q; bi

)
= Pr

Q ≤ q +
∑
j 6=i

ϕj
(
bi (q)

)
=F

q +
∑
j 6=i

ϕj
(
bi (q)

) .
Where the demands ϕj of agents j 6= i are differentiable, we have

Gi
b

(
q; bi

)
= f

q +
∑
j 6=i

ϕj
(
bi (q)

)∑
j 6=i

ϕjp
(
bi (q)

)
.
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Since for all j, the demand function ϕj must be differentiable almost everywhere, the result
follows.

Lemma 11. At points where Gi
b (q; bi) is well-defined, the first-order conditions of the pay-

as-bid auction are given by

−
(
v (q)− bi (q)

)
Gi
b

(
q; bi

)
= 1−Gi

(
q; bi

)
.

In the case of pure strategies under symmetric bidder information,70 the first-order condition
can be written as

−
(
v (q)− bi (q)

)( d

db
Q
(
bi (q)

)
− ϕip

(
bi (q)

))
= H

(
Q
(
bi (q)

))
,

where Q (p) is the inverse of p (Q).

Proof. The agent’s maximization problem is given by

max
b

∫ Q

0

∫ q

0
v (x)− b (x) dxdGi (q; b) .

Integrating by parts, we have

max
b
−
[(

1−Gi (q; b)
) ∫ q

0
v (x)− b (x) dx

]
|Qq=0 +

∫ Q

0
(v (q)− b (q))

(
1−Gi (q; b)

)
dq.

In the first square bracket term, both multiplicands are bounded for q ∈ [0, Q], hence the
fact that 1−Gi(Q; b) = 0 for all b and

∫ 0
0 v(x)− b(x)dx = 0 for all b allows us to restate the

agent’s optimization problem as

max
b

∫ Q

0
(v (q)− b (q))

(
1−Gi (q; b)

)
dq,

where the integral still equals bidder’s expected utility from bidding b. The calculus of
variations gives us the necessary condition

−
(
1−Gi

(
q; bi

))
−
(
v (q)− bi (q)

)
Gi
b

(
q; bi

)
= 0.

This holds at almost all points at which Gi
b is well-defined. Rearrangement yields the first

70The definition of the derivative of bidder i’s distribution of supply, Gib, obtained in Lemma 10, assumes
pure strategies under symmetric bidder information. The first order condition derived here is invariant to
the source of randomness in the bidder’s allocation, but the statement in terms of aggregate demand holds
only for pure strategies under symmetric bidder information.
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expression for the first-order condition.
To derive the second expression, let us substitute into the above formula for Gi and Gi

b

from the Lemma 10. We obtain

−
(
v (q)− bi (q)

)
f

q +
∑
j 6=i

ϕj
(
bi (q)

)∑
j 6=i

ϕjp
(
bi (q)

) = 1− F
q +

∑
j 6=i

ϕj
(
bi (q)

) ,
Now, Q (p) is well-defined since we have shown that p is strictly monotone. By Corollary 9
bids are strictly monotone in quantities and hence q +∑

j 6=i ϕ
j (bi (q)) = Q (bi (q)), and

−
(
v (q)− bi (q)

)∑
j 6=i

ϕjp
(
bi (q)

) = H
(
Q
(
bi (q)

))
.

Since ∑j 6=i ϕ
j
p (bi (q)) = d

db
Q (bi (q)) − ϕip (bi (q)), the second expression for the first order

condition obtains.

Lemma 12. Each bidder’s equilibrium inverse bid is Lipschitz continuous at all prices p at
which the bidder receives a quantity in [0, ϕi(p(QR))).

Proof. Consider an equilibrium bid profile (bi)ni=1, and let qi(Q) = ϕi(p(Q)) be the resulting
allocation of bidder i given supply Q. By way of contradiction, assume that bidder i’s inverse
bid ϕi is not Lipschitz continuous at some price p at which the bidder receives a quantity
q = ϕi (p) in [0, qi(QR)). Then p = bi(q) and Gi(q; bi) < 1. Let Qmin ∈

[
0, QR

)
be a supply

at which q = qi(Qmin); in particular, Qmin = q +∑
j 6=i ϕ

j(bi(q)).
The failure of Lipschitz continuity implies that either for any K̃ there are arbitrarily

small ε > 0 such that ϕi (p− ε) − ϕi (p) > K̃ε, or for any K̃ there are arbitrarily small
ε > 0 such that ϕi (p)−ϕi (p+ ε) > K̃ε.71 We provide the argument for the former case; the
analysis of the latter cases is analogous.72 In this case, for any K > 0, there are arbitrarily
small ε > 0 such that

bi(q)− bi(q + ε) < Kε. (6)

We proceed in five steps. First, we show that bidder i wins an arbitrarily large fraction
of residual market quantity just above Q. Second, there exist non-trivial intervals on which

71The assumption that ϕi (p) < qi(QR) implies that p− ε is above reserve price for small ε > 0.
72In the former case we maintain the assumption that bi is right continuous. In the latter case, we consider

b̂i, the left-continuous modification of bi. Because bids are monotone on a compact domain, b̂i and bi agree
almost everywhere and yield the same utility for bidder i, we infer that any utility-improving deviation from
b̂i is a utility-improving deviation from bi, and vice-versa. As, in the latter case, ϕi fails Lipschitz continuity
to the right of p, we conclude that bi is left continuous at q, so bi and b̂i agree at this point and ϕ̂i (the
inverse of b̂i) also fails Lipschitz continuity to the right of p. We may then derive the same contradiction as
in the former case.
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bidder i wins an arbitrarily large fraction of the residual market quantity. Third, the bid
of bidder i is nearly flat on non-trivial intervals just above Q. Fourth, each opponent j’s
bid must be steep near qj(Qmin). Fifth and finally, the last two claims allow us to conclude
that bidder i’s inverse bid must be discontinuous at p, contradicting Corollary 9 in which we
showed that equilibrium bids are strictly decreasing.

Claim 1. There is a subsequence of aggregate quantities converging to Qmin on which
i receives all additional supply beyond Qmin; that is, for any M < 1 and ε̄ > 0, there is
Q ∈ (Qmin, Qmin + ε̄) such that qi(Q) > q + (Q−Qmin)M .

Proof. Take any ε > 0 and consider the deviation bε that “kicks out” the bid function at
q for length ε,

bε (q′) =

b
i (q′) if q′ /∈ [q, q + ε] ,

bi (q) = p if q′ ∈ [q, q + ε] .

This deviation increases payment by at most
∫ q+ε
q bi (q) − bi (x) dx whenever the realized

quantity q′ > q, which occurs with probability 1 − Gi(q; bi) ≡ P . It also increases the
allocation: as in equilibrium the opponents bids are strictly decreasing (by Corollary 9),
whenever the allocation of i would have been in the interval (q, q+ε), the allocation increases
to q+ min{ε,Q−Qmin}. The resulting gain in expected utility attributable to the allocation
increase is ∫ Qmax

Qmin

∫ q+min{ε,Q−Qmin}
qi(Q)

v (x)− bi (q) dxdF (Q) ,

where Qmax = [q + ε] + ∑
j 6=i ϕ

j(bi(q + ε)). Notice that Qmax > Qmin + ε. As (bj)nj=1 is an
equilibrium, the costs of the deviation weakly outweigh the benefits,

[∫ q+ε

q
bi (q)− bi (x) dx

]
P ≥

∫ Qmax

Qmin

∫ q+min{ε,Q−Qmin}
qi(Q)

v (x)− bi (q) dxdF (Q) .

The left-hand side is bounded from above by [bi(q) − bi(q + ε)]εP , and the right-hand side
is bounded from below by

∫ Qmax

Qmin

∫ q+min{ε,Q−Qmin}
qi(Q)

v (x)− bi (q) dxdF (Q)

≥
∫ Qmax

Qmin

(
q + min

{
ε,Q−Qmin

}
− qi (Q)

) [
v
(
q + min

{
ε,Q−Qmin

})
− bi (q)

]
dF (Q)

≥
[
v
(
q + min

{
ε,Qmax −Qmin

})
− bi (q)

]
f
∫ Qmax

Qmin

(
q + min

{
ε,Q−Qmin

}
− qi (Q)

)
dQ

where f > 0 is a lower bound on f(·) on [Qmin, Qmax]; such a bound exists because f is
continuous and f(·) > 0 on [Qmin, Qmax] for small ε (as then Qmax < Q).
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A necessary condition for the alternate bid bε to not improve bidder i’s utility is

[
bi (q)− bi (q + ε)

]
εP

≥
[
v
(
q + min

{
ε,Qmax −Qmin

})
− bi (q)

]
f
∫ Qmax

Qmin

(
q + min

{
ε,Q−Qmin

}
− qi (Q)

)
dQ

=
[
v (q + ε)− bi (q)

]
f
∫ Qmax

Qmin

(
q + min

{
ε,Q−Qmin

}
− qi (Q)

)
dQ

Let C > 0 be such that C ≤ [v(q + ε)− bi(q)]f/P ; we then require

bi (q)− bi (q + ε) ≥ C

ε

∫ Qmax

Qmin

(
q + min

{
ε,Q−Qmin

}
− qi (Q)

)
dQ.

Consider any M ∈ (0, 1] such that

qi(Q) ≤ q + (Q−Qmin)M

for Q ∈ (Qmin, Qmax); such an M trivially exists because this inequality holds for M = 1.
Note that q + ε = qi (Qmax) ≤ q + (Qmax −Qmin)M implies that

Qmax ≥ Qmin + 1
M
ε.

The bounds on Qmax and qi(Q) imply that

∫ Qmax

Qmin

(
q + min

(
ε,Q−Qmin

)
− qi (Q)

)
dQ

=
∫ Qmin+ε

Qmin

(
q − qi (Q) +Q−Qmin

)
dQ+

∫ Qmax

Qmin+ε

(
q − qi (Q) + ε

)
dQ

≥
∫ Qmin+ε

Qmin

(
−(Q−Qmin)M +Q−Qmin

)
dQ

=
∫ Qmin+ε

Qmin

(
(1−M) (Q−Qmin)

)
dQ = (1−M) ε

2

2 .

Plugging this into the necessary condition above we transform it to

bi (q)− bi (q + ε) ≥ C

ε
(1−M) ε

2

2 = C (1−M)
2 ε

for all sufficiently small ε > 0 and any M ∈ (0, 1] such that qi(Q) ≤ q + (Q − Qmin)M for
Q ∈ (Qmin, Qmin + ε).

The above bound and equation 6 jointly imply that, for any M < 1 and ε̄ > 0, there
is Q ∈ (Qmin, Qmin + ε̄) such that qi(Q) > q + (Q − Qmin)M . This proves the claim: there
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are supply realizations arbitrarily close to Qmin for which agent i wins an arbitrarily large
proportion of aggregate quantity above Qmin. QED

Claim 2. For anyM < 1 and any ε > 0 there is an aggregate quantity Q′ and a quantity
q′ = qi(Q′) won by bidder i such that for all Q̃′ ∈ (Q′, Q′ + ε),

qi
(
Q̃′
)
≥ q′ +

(
Q̃′ −Q′

)
M.

Furthermore, Q′ can be taken to be arbitrarily close to Qmin.
Proof. Because qi(·) is weakly increasing and q + (Q − Qmin)M is continuous in Q, by

applying Claim 1 to sufficiently larger M < 1, we obtain intervals (Q′, Q′ + ε) such that for
for all Q̃′ ∈ (Q′, Q′ + ε),

qi
(
Q̃′
)
≥ q +

(
Q̃′ −Qmin

)
M

as claimed. QED
Claim 3. There is a constant C > 0 such that for any M < 1 and for any Q′ from Claim

2 sufficiently close to Qmin and for any sufficiently small δ > 0, the bids near q′ = qi (Q′)
satisfy

bi (q′)− bi (q′ + δ) ≤ C (1−M) δ.

Proof. Consider M , ε, Q′, and q′ from Claim 2. For δ ∈ (0, ε) consider a deviation

bδ (q̃′) =

b
i (q′ + δ) if q̃′ ∈ [q′, q′ + δ] ,

bi (q̃′) otherwise.

This deviation saves payment
∫ q′+δ
q′ bi (x)−bi (q′ + δ) dx with probability at least 1−Gi(q′+δ),

and, for δ sufficiently small, we can bound this probability from below by some constant
P > 0. In equilibrium the saved payment is weakly lower than the associated gross utility loss
from winning fewer units; the latter is bounded above by v(0) (1−M) δ(Gi(q′+ δ)−Gi(q′)),
where (1−M) δ is the bound on quantity loss implied by the bound in Claim 2. Thus

P
∫ q′+δ

q′
bi (x)− bi (q′ + δ) dx ≤ v (0) (1−M)

(
Gi (q′ + δ)−Gi (q′)

)
δ.

As bi is weakly decreasing, the left-side integral is larger than 1
2δ
(
bi
(
q′ + 1

2δ
)
− bi (q′ + δ)

)
,

and hence

bi
(
q′ + 1

2δ
)
− bi (q′ + δ) ≤ 2v (0) (1−M)

P

(
Gi (q′ + δ)−Gi (q′)

)
.

Because the density of supply is continuous and bounded away from 0 on relevant supply
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levels and because bidder i receives at least fraction M of any small increase in aggregate
supply above Q′, there is some real f > 0 such that Gi(q′ + δ)−Gi(q′) < fδ for sufficiently
small δ. In effect,

bi
(
q′ + 1

2δ
)
− bi (q′ + δ) ≤ 2v (0) f

P
(1−M) δ.

Because this inequality holds for all δ arbitrarily small, we may telescope it to obtain

lim
k→∞

bi
(
q′ + 1

2k δ
)
− bi (q′ + δ) ≤

 ∑
k=1,2,...

1
2k

 2v (0) f
P

(1−M) δ,

where the right-hand summation converges to 2. The claim follows from the right-continuity
of bi.73 QED

Claim 4. The bids of j 6= i are steep near qj(Qmin). That is, there is a constant C > 0
such that for any M < 1, any sufficiently small ε, and any Q′ from Claim 2 sufficiently close
to Qmin, the bids near qj = qj (Q′) satisfy

bj (qj)− bj (qj + ε) ≥
[

M

1−M

]
Cε.

Proof. Let q′ = qi (Q′), M , and δ be as in Claim 3 above and qj = qj (Q′) = ϕj (bi (q′))
and note that when Q′ is close to Qmin then q′ is close to q = qi(Qmin) and qj is close to
qj(Qmin). Let ε > 0 and, for bidder j 6= i, consider the deviation bε given by

bε (q) =

b
i (q′) if q ∈ [qj, qj + ε] ,

bj (q) otherwise.

The costs and benefits of this deviation are analogous to those calculated in the proof of
Claim 1 for bidder i. As the deviation is not profitable in equilibrium, we infer that

[∫ qj+ε

qj
bj (qj)− bj (x) dx

]
P ≥

∫ Qmax

Qmin

∫ qnew(Q)

qj(Q)
v (x) dxdF (Q)

where qnew (Q) is the allocation of j after the deviation. From Lemma 8 we know that
73Recall that we consider the failure of Lipschitz continuity in which for any K̃ there are arbitrarily small

ε > 0 such that ϕi (p− ε) − ϕi (p) > K̃ε. The argument for the failure of Lipschitz continuity in which for
any K̃ there are arbitrarily small ε > 0 such that ϕi (p)−ϕi (p+ ε) > K̃ε needs an adjustment at this point:
as mentioned above, in the latter argument we replace bi with its left-continuous modification b̂i. We then
bound limk→∞ b̂i (q′ − δ)− b̂i

(
q′ − 1

2k δ
)
from above, and the proof proceeds with minimal further changes.
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v(qj) > bj(qj); since dF (·) ≥ f , this inequality implies

∫ qj+ε

qj
bj (qj)− bj (x) dx ≥ Cj

∫ Qmax

Qmin
qnew (Q)− qj (Q) dQ.

for some constant Cj > 0 that depends on neither qj nor ε. The left-hand side can be
bounded above, ∫ qj+ε

qj
bj (qj)− bj (x) dx ≤

(
bj (qj)− bj (qj + ε)

)
ε.

By Claim 2 and market clearing, we know that qj(Q) ≤ qj + (1−M)(Q−Qmin) and hence
Qmax−Qmin ≥ ε/(1−M). As in the analysis of Claim 1, qnew (Q) = min{qj+ε, qj+Q−Qmin}.
Since qnew (Qmax)− qj(Qmax) = 0, we have

Cj

∫ Qmax

Qmin
qnew (Q)−qj (Q) dQ ≥ Cj

∫ Q̃

Qmin

(
Q−Qmin

)
MdQ+Cj

∫ Q⊥

Q̃
ε−(1−M)

(
Q−Qmin

)
dQ,

where Q⊥ is such that ε− (1− M̂)(Q⊥ −Qmin) = 0 and Q̃ = Qmin + ε; we can truncate the
integration atQ⊥ because deviation bε weakly increases the quantity allocated to bidder j and
hence qnew (Q) ≥ qj(Q) for all Q. The right-hand side integrals are

∫ Q̃
Qmin (Q−Qmin)MdQ =

1
2Mε2 and

∫ Q⊥

Q̃
ε− (1−M)

(
Q−Qmin

)
dQ = 1

2
[
ε− (1−M)

(
Q̃−Qmin

)] [
Q⊥ −Qmin

]
= 1

2Mε
[

ε

1−M

]
,

where the last equation follows from the just-above definitions of Q̃ and Q⊥. Putting this
all together, we have

Cj

∫ Qmax

Qmin
qnew (Q)− qj (Q) dQ ≥ 1

2CjMε2 + 1
2CjMε

[
ε

1−M

]
= 1

2CjM
[2−M
1−M

]
ε2.

Thus a necessary condition for the deviation not to be profitable is

bj (qj)− bj (qj + ε) ≥ 1
2CjM

[2−M
1−M

]
ε.

Because the right-hand side is positive and 2−M > 1, the claim obtains for C = 1
2Cj. QED

Knowing that the bids of opponents j 6= i are steep when the bid of bidder i is flat—and
in particular establishing bounds for steepness and flatness in terms of commonM—permits
a tighter bound on the quantity lost by bidder i when deviating downward. Retain qi, M ,
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and δ as above, let ε > 0 and consider a deviation bε,

bε (q) =

b
i (qi)− ε if bi (q) ∈ [bi (qi)− ε, bi (qi)] ,

bi (q) otherwise.

The cost savings of this deviation are bounded below by P
∫ ϕi(bi(qi)−ε)
qi

bi(q)− bε(q)dq, where
P is as in Claim 1. This bound is approximated from below by

P
∫ ϕi(bi(qi)−ε)
qi

bi (q)− bε (q) dq ≥ 1
2

(
ϕi
(
p− 1

2ε
)
− ϕi (p)

)
Pε.

The gross utility sacrificed by bidder i is bounded above by

µf
∫ Q̃

Qmin
Q−QmindQ+ µf

∫ Qmax

Q̃

2 (n− 1) (1−M)
CM (2−M) εdQ,

where C is as in Claim 3. The former term is the quantity lost that results in allocation
q′ = qi (but would have resulted in allocation qi(Q) > qi); the lost quantity in this interval
is bounded above by Q−Qmin. The latter term is the quantity lost that results in allocation
q′ > qi; the quantity lost in this interval is bounded above by the inverse slope of opponent
bids, established above. Noting that 2−M ≥ 1, the gross utility sacrificed is bounded by

[(
Q̃−Qmin

)2
+
(1−M

M

) (
Qmax − Q̃

)
(n− 1) 2C−1ε

]
µf

≤
[[(1−M

M

)
(n− 1) 2C−1

]2
ε2 +

(1−M
M

) (
Qmax − Q̃

)
(n− 1) 2C−1ε

]
µf.

Note that Qmax − Q̃ ≤ (ϕi(bi(qi)− ε)− qi)/M . Substituting through, a necessary inequality
is

1
2

(
ϕi
(
p− 1

2ε
)
− ϕi (p)

)
P

≤
[(1−M

M

)
(n− 1) 2C−1ε+ 1

M

(
ϕi (p− ε)− ϕi (p)

)] [(1−M
M

)
(n− 1) 2C−1

]
µf.

To economize notation we let K̂ = 1 − M and consolidate constants into C1 and C2 (in
which we rely on M being close to 1 and thus bound M−1 above by 2), thus transforming
the above into

ϕi
(
p− 1

2ε
)
− ϕi (p) ≤

[
C1K̂ε+

(
ϕi (p− ε)− ϕi (p)

)
C2
]
K̂.
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This gives (
ϕi (p− ε)− ϕi (p)

)
C2K̂ ≥ ϕi

(
p− 1

2ε
)
− ϕi (p)− C1K̂

2ε.

Because the same inequality must hold for all ε′ ∈ (0, ε), telescoping this inequality implies
that for any k,

(
ϕi (p− ε)− ϕi (p)

)
C2K̂ ≥

[
1

C2K̂

]k (
ϕi
(
p− 1

2k+1 ε
)
− ϕi (p)

)
− 1

2k

1−
(
2C2K̂

)k+1

1− 2C2K̂

C1K̂
2ε.

Since ϕi is not Lipschitz continuous at p, for any K > 0 and any k ∈ N we can find ε′ > 0
such that ε′ ≤ ε/2k and ϕi (p− ε′)− ϕi (p) > Kε′. For such K and ε′, let k̄ = max{k : ε′ <
ε/2k}; by construction, ε/2 < 2k̄ε′ ≤ ε. Substituting into the previous inequality gives

(
ϕi
(
p− 2kε′

)
− ϕi (p)

)
C2K̂ ≥

[
1

C2K̂

]k̄
Kε′ −

1−
(
2C2K̂

)k̄+1

1− 2C2K̂

C1K̂
2ε′

≥
[

1
C2K̂

]k̄
Kε′ − 2C1K̂

2ε′ =

K − 2
(
C2K̂

)k̄
C1K̂

2(
C2K̂

)k̄
 ε′.

The middle inequality follows from the fact that K̂ may be arbitrarily close to 0, thus
[1− (2C2K̂)k̄+1]/[1− 2C2K̂] ≤ 2 without loss of generality. Similarly, the right-hand term in
the numerator is vanishingly small in comparison to the left-hand term (which is independent
of k̄), hence

ϕi
(
p− 2k̄ε′

)
− ϕi (p) ≥ 1

2

 K(
C2K̂

)k̄+1

 ε′.
Recalling that ε/2 < 2k̄ε′ ≤ ε, we substitute into the previous inequality to obtain

ϕi (p− ε)− ϕi (p) ≥ ϕi
(
p− 2k̄ε′

)
− ϕi (p) ≥ Kε(

2C2K̂
)k̄+1 .

Since C2 is constant and independent of ε, and K̂ is arbitrarily close to zero, the fact that k̄
may be arbitrarily large implies that ϕi (p− ε)− ϕi (p) > K ′ε for all K ′ ∈ R, contradicting
the fact that ϕi is bounded. It follows that ϕi must be Lipschitz continuous at p.

Lemma 13. Equilibrium inverse bids are continuously differentiable at all prices p ∈ (p, p].

Proof. Lemma 12 gives that equilibrium inverse bids are Lipschitz continuous. Note that Gi
b

is continuous at a point if the equilibrium first-order conditions are satisfied at this point;
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let Z be the set of quantities at which the equilibrium first-order conditions are satisfied.
Because the first-order condition is satisfied almost everywhere (Lemma 11), it follows that
Z has full measure and Gi

b is continuous almost everywhere (Lemma 10). Expressed in terms
of inverse bid functions, the first order condition is

(
v
(
ϕi (b)

)
− b

)
Gi
b

(
ϕi (b) ; b

)
= 1−Gi

(
ϕi (b) ; b

)
= 1− F

 n∑
j=1

ϕj (b)
 ,

and, because the marginal value v and all inverse bids ϕi are continuous, it follows that
there exists a continuous function Ĝi

b that equals Gi
b on Z. Because each ϕi is monotone it

is differentiable on a set Z ′ with full measure. Thus on Z ∩ Z ′, we have

ϕip (p) = 1
n− 1

∑
j 6=i

Gj
b

(∑
k

ϕk (p)
)
− n− 2
n− 1G

i
b

(∑
k

ϕk (p)
)
.

It follows that there is a function ϕ̂ip, continuous on all of (p, p], such that ϕip equals ϕ̂ip on
Z ∩ Z ′, ϕip = ϕ̂ip|Z∩Z′ .

Since ϕi is Lipschitz continuous it is the integral of ϕip, and since ϕip = ϕ̂ip|Z∩Z′ , it is
the case that ϕi(p) = −

∫ p
p ϕ̂

i
p (x) dx. Since ϕ̂ip is continuous, the fundamental theorem of

calculus implies ϕip = ϕ̂ip, and the result is shown.

Corollary 10. In any equilibrium of the pay-as-bid auction, for all bidders i and for all
q ∈ [0, QR

/n),
− (v (q)− b (q))Gi

b

(
q; bi

)
= 1−Gi

(
q; bi

)
.

Lemma 14. Equilibrium bidding strategies must be symmetric in all pure strategy equilibria:
bi = b for all i.

Proof. The proof proceeds by establishing an ordering of asymmetric bid functions. We use
this ordering to show that equilibrium is symmetric in the n = 2 bidder case, and the result
from the n = 2 bidder case provides tools for the general analysis. Intuitively, the argument
is that agents would prefer to receive a positive quantity rather than zero quantity; because,
as we prove, receiving zero quantities is a necessary feature of asymmetric putative equilibria,
the asymmetric bids are not best responses. Our proof relies on Lemma 12, which establishes
Lipschitz continuity of equilibrium inverse bids; the fundamental theorem of calculus applies,
and we have that for any internal price p, ϕi(p) =

∫ p
p ϕ

i
p(x)dx.

Note that for any agent i, ∑j 6=i ϕ
j
p(p) = Qp(p) − ϕip(p). Then we can write the agent’s
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first-order condition as

bi (q) = v (q) +
(

1− F (Q (p))
f (Q (p))

)(
1

Qp (p)− ϕip (p)

)
.

Now suppose that two agents i, j have bid functions which differ on a set of positive measure;
let q be such that bi(q) > bj(q). Then there is a price p such that ϕi(p) > ϕj(p), and
v(ϕi(p)) < v(ϕj(p)). For any such price, substituting into the agents’ first-order conditions
gives (

1− F (Q (p))
f (Q (p))

)(
1

Qp (p)− ϕip (p)

)
>

(
1− F (Q (p))
f (Q (p))

)(
1

Qp (p)− ϕjp (p)

)
.

As 1− F (Q (p)) 6= 0 (because the inequality is strict), rearrangement gives

ϕjp (p) < ϕip (p) .

Thus, whenever ϕi(p) > ϕj(p), we have ϕip(p) > ϕjp(p). Recalling from Theorem 1 that bids
must equal values at q = Q/n, this implies that if there is any p such that ϕi(p) > ϕj(p),
then ϕi > ϕj.

Now consider the implications for the n = 2 bidder case, and let j 6= i. Assume that
there is p with ϕi(p) > ϕj(p) > 0. Then there is some p̌ such that ϕj(p̌) = 0 and ϕi(p̌) > 0.
Basic auction logic dictates that bidder i can never outbid the maximum bid of bidder j
(i.e., it must be that bi(0) = bj(0)) thus it must be that bidder i’s first-order condition does
not apply for initial units, and she is submitting a flat bid. That is, bi(q)|q≤ϕi(p̌) = p̌. Now
let ε, λ > 0, and define a deviation b̂ελ for bidder j,

b̂ελ (q) =

b
j (0) + λ if q ≤ ε,

bj (q) otherwise.

Then for all q ∈ (0, ε], b̂ελ(q) > bi(q), and when the realized quantity is Q ∈ (0, ε] bidder j
wins the entire supply. To bound the additional utility, we see that for small ε > 0 bidder j
gains at least ∫ ε

0

(
v (x)− bj (x)

)
dx
(
F
(
ϕi (p̌)

)
− F (ε)

)
.

There is an extra cost paid as well; to bound this cost we will assume that it is paid with
probability 1, and this cost is (bj(0) + λ)ε−

∫ ε
0 b

j(x)dx. The deviation b̂ελ is profitable if the
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ratio of benefits to costs is greater than 1, hence we look at

lim
λ↘0,ε↘0

∫ ε
0 (v (x)− bj (x)) dx (F (ϕi (p̌))− F (ε))

(bj (0) + λ) ε−
∫ ε
0 b

j (x) dx

= lim
ε↘0

∫ ε
0 (v (x)− bj (x)) dx (F (ϕi (p̌))− F (ε))

bj (0) ε−
∫ ε

0 b
j (x) dx .

The numerator and denominator both go to zero as ε ↘ 0; application of l’Hôpital’s rule
gives

= lim
ε↘0

v (0)− bj (0)
0 = +∞.

Then either the deviation to b̂ελ is profitable for bidder j (when |bjq(0)| < ∞), or bidder i
may (essentially) costlessly reduce the initial flat of her bid function (when |bjq(0)| =∞).74

Now consider the case of n ≥ 3 agents. By the previous arguments we know that for
small quantities submitted bid functions can be ranked (as can their inverses), and that at
least two agents submit the highest possible bid function. Thus, we focus on two selected
inverse bid functions, defined pointwise,

ϕH (p) ≡max
{
ϕi (p)

}
,

ϕL (p) ≡max
{
ϕi (p) : ϕi (p) < ϕH (p)

}
.

For any asymmetric equilibrium, ϕL is well-defined because the analysis above shows that,
unless the inverse bid functions ϕi, ϕj are the same for all p, then they are different for all p.
Let mH ≡ #{i : ϕi = ϕH} and mL = #{i : ϕi = ϕL} be the numbers of agents submitting
each bid. By the above analysis mH ≥ 2 and mL ≥ 1; additionally, mH + mL ≤ n. As
before, there is p̌ such that ϕL(p̌) = 0, ϕH(p̌) > 0, and ϕL(p) > 0 for all p < p̌. Corollary 9
shows that ϕH must be continuous and Lemma 13 implies that ϕHp is continuous, hence the
equilibrium first order conditions imply

lim
p↘p̌

(mH − 1)ϕHp (p) = lim
p↗p̌

[
(mH − 1)ϕHp (p) +mLϕ

L
p (p)

]
.

We now show that if limp↗p̌ ϕ
L
p (p) = 0, then a bidder bidding bL has a profitable deviation.

74Implicit here is that v(0) > bj(0) = bi(0), which follows from Lemma 8 but in this particular case is
trivial: since bidder i is bidding flat to ϕi(p̌), if v(0) = bi(0) she is obtaining zero surplus on a positive measure
of initial units. The bidder would rather cut their bid and lose all of these units with some probability, saving
payment for higher units and gaining expected gross utility.
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Let ε > 0 be small, and consider a deviation b̂L from bL such that

b̂L (q) =

b
L (ε) if q ≤ ε,

bL (q) otherwise.

The deviation b̂L yields a reduction in quantity bounded above by ε, at a margin bounded
above by v(0). Because ϕLp < ϕHp ≤ 0, the probability of reduced quantity is bounded above
by (mH + mL)fε, where f is an upper bound for f(·) in a neighborhood of mHϕ

H(bL(0)).
The expected gross utility loss from the deviation b̂L is therefore bounded above by (mH +
mL)fv(0)ε2. On the other hand, the deviation b̂L saves the bidder payment for all quantity
realizations q > ε. This payment is saved with probability bounded below by some P > 0,
and, because ϕL(p̌) = 0 and limp↗p̌ ϕ

L
p (p) = 0, for any C > 0 there is sufficiently small ε

such that the amount saved bounded from below by ε2/C. The deviation is profitable if

(mH +mL) fv (0) ε2 <
ε2

C
.

After factoring out the common ε2 term, the left-hand side is constant while the right-hand
side can be arbitrarily large for small C. It follows that b̂L is a profitable deviation for some
ε.

Then it cannot be the case that limp↗p̌ ϕ
L
p (p) = 0. It follows that

lim
p↘p̌

ϕHp (p) = lim
p↗p̌

ϕHp (p) + mL

mH − 1ϕ
L
p (p) < 0.

Intuitively, the bid function bH is steeper below ϕH(p̌) than above, and there is a kink at
this point. This implies a discontinuity in a bidder L’s first-order condition near q = 0. For
p close to but less than p̌, the first-order condition is

−
(
v
(
ϕL (p)

)
− p

)
f (Q (p))

(
mHϕ

H
p (p) + (mL − 1)ϕLp (p)

)
− (1− F (Q (p))) = 0,

=⇒ −
(
v
(
ϕL (p)

)
− p

)
f (Q (p))

(
(mH − 1)ϕHp (p) +mLϕ

L
p (p)

)
− (1− F (Q (p))) > 0.

Letting p↗ p̌, we know that the term [(mH−1)ϕHp (p)+mLϕ
L
p (p)] approaches limp↘p̌(mH−

1)ϕHp (p), proportional to the marginal probability gained by a slight increase in bid from bL

near p̌ to b̃L > p̌. Thus, the L bidder’s second-order conditions are not satisfied near q = 0,
and this is not an equilibrium.
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E Proofs for Section 3 (Pay-as-Bid Equilibrium)

For our proofs of Theorems 2, 3, and 4, we assume that the reserve price is R = 0. In
this case, the maximum realizable quantity is QR = Q. In Supplementary Appendix E.4 we
detail how these proofs must change to account for binding reserve prices.

E.1 Proof of Theorem 2 (Uniqueness)

Proof. From Lemma 11 and market clearing, we know that for all bidders

(p (Q)− v (q))Gi
b

(
q; bi

)
= 1−Gi

(
q; bi

)
.

Since Lemma 14 tells us that agents’ strategies are symmetric, Lemma 10 allows us to write
this as (

p (Q)− v
( 1
n
Q
))

(n− 1)ϕp (p (Q)) = H (Q) ,

where H(Q) = (1 − F (Q))/f(Q). From market clearing, we know that p(Q) = b(Q/n);
hence pQ(Q) = bq(Q/n)/n. Additionally, standard rules of inverse functions give ϕp(p(Q)) =
1/bq(Q/n) almost everywhere. Thus we have

(
p (Q)− v

( 1
n
Q
))

n− 1
n

= H (Q) pQ (Q) .

Now suppose that there are two solutions, p and p̂. From Theorem 1 we know that p(Q) =
p̂(Q). Suppose that there is a Q such that p̂(Q) > p(Q); taking Q near the supremum of
Q for which this strict inequality obtains we conclude that p̂Q(Q) < pQ(Q).75 But then we
have

p̂ (Q) > p (Q) = v
( 1
n
Q
)

+
(

n

n− 1

)
H (Q) pQ (Q) > v

( 1
n
Q
)

+
(

n

n− 1

)
H (Q) p̂Q (Q) .

The presumed right-continuity of bids and Lipschitz continuity of ϕ (from Lemma 12) allow
us to conclude that if p solves the first-order conditions, p̂ cannot.76

75The inequality inversion here from usual derivative-based approaches reflects the fact that we are “work-
ing backward” from Q, while any solution must be weakly decreasing: thus a small reduction in Q should
yield p̂(Q) = p(Q) ≤ p < p̂.

76The first-order condition for bids ensures that the slope of ϕ is strictly negative; then since ϕ is Lips-
chitz continuous (by Lemma 12) any equilibrium inverse bid is the integral of its own derivative, and any
equilibrium clearing price function is the integral of its own derivative.

24



E.2 Proof of Theorem 3 (Bid Representation)

From the first order condition established in the proof of uniqueness, the equilibrium price
satisfies

pQ = pH̃ − v̂H̃,

where v̂(x) = v(x/n), and H̃(x) = [1/H(x)][(n − 1)/n]. The solution to this equation has
general form

p (Q) = Ce
∫ Q

0 H̃(x)dx − e
∫ Q

0 H̃(x)dx
∫ Q

0
e−
∫ x

0 H̃(y)dyH̃ (x) v̂ (x) dx,

parametrized by C ∈ R. Define ρ = n−1
n
∈ [1

2 , 1). We can see that H̃ = −ρ d
dQ

ln(1 − F ).
Thus we have

e
∫ t

0 H̃(x)dx = e−ρ
∫ t

0
d
dx

ln(1−F (x))dx = e−ρ(ln(1−F (t))−ln 1) = (1− F (t))−ρ .

Substituting and canceling, we have for Q < Q:

p (Q) =
(
C − ρ

∫ Q

0
f (x) (1− F (x))ρ−1 v̂ (x) dx

)
(1− F (Q))−ρ . (7)

Since 1 − F (Q) = 0, this implies that C = ρ
∫Q

0 f (x) (1− F (x))ρ−1 v̂ (x) dx. The clearing
price is then given by

p (Q) = ρ
∫ Q

Q
f (x) (1− F (x))ρ−1 v̂ (x) dx (1− F (Q))−ρ .

Since d/dy[FQ,n(y)] = ρf(y)(1−F (y))ρ−1(1−F (Q))−ρ, our formula for clearing price obtains,
and since we have proven earlier that the equilibrium bids are symmetric, the formula for
bids obtains as well.

E.3 Proofs of Theorem 4 (Existence) and Corollary 1

Proof of Theorem 4. The proof of equilibrium existence under deterministic supply is given
in the main text, therefore we assume in this proof that supply has full support, SuppQ =
[0, Q]. Let us this fix a bidder i whose incentives we will analyze, and assume that other
bidders j 6= i follow the strategies bj = b of Theorem 3 when bidding on quantities q ≤ Q

R
/n,

and that they bid bj
(
Q
R
/n
)

= v
(
Q
R
/n
)
for quantities q ∈

[
Q
R
/n,Q

R
/ (n− 1)

]
if QR = Q

(non-binding reserve price), and that they bid v (q) for quantities q ∈
[
Q
R
/n,Q

R
/ (n− 1)

]
if QR

< Q (binding reserve price). The resulting bid function is valid because, by definition,
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b satisfies bj
(
Q
R
/n
)

= v
(
Q
R
/n
)
. Note that in equilibrium there is no incentive for bidder i

to lower or raise their bid on any quantity q ≥ Q
R
/n and we only need to check that bidder

i finds it optimal to submit bids prescribed by Theorem 3 for quantities q ∈ [0, QR
/n).

Because the bid b derived in Theorem 3 is strictly decreasing on [0, QR
/n] and the auction

is discriminatory, a bid b̃ such that there is a q with b̃(q) > b(0) is weakly dominated by a
bid which is never above b(0). Second, since the maximum of reserve price and opponents’
bid b is never below v(QR

/n) on [0, QR
/(n − 1)], a bid b̃(q) < v(QR

/n) is never awarded
quantity q. These two facts in turn imply that the bidder’s optimal bid for any quantity is
b̃(q) ∈ [v(QR

/n), b(0)]. Finally, since bid b is continuous and, by Theorem 1, is such that
b(QR

/n) = v(QR
/n), it is the case that for any utility-maximizing bid b̃ and any quantity q,

there is a quantity q̂ ∈ [0, QR
/n] such that b̃(q) = b(q̂). Because b is strictly decreasing on

q̂ ∈ [0, QR
/n], the preceding equality defines a unique mapping q̃ from q to q̂. As shown in

the proof of Lemma 11, bidder i’s expected utility from submitting bid b̃ is77

E
[
ui
(
b̃
)]

=
∫ Q

0

(
v (q)− b̃ (q)

) (
1− F

(
q + (n− 1)ϕ ◦ b̃ (q)

))
dq,

and it follows that we may write the expected utility from bidding b ◦ q̃ as

E
[
ui (b ◦ q̃)

]
=
∫ Q

0
(v (q)− b ◦ q̃ (q)) (1− F (q + (n− 1) q̃ (q))) dq =

∫ Q

0
U (q̃ (q) ; q) dq.

In particular, instead of bidder i selecting a bid for quantity q, we may consider bidder i as
selecting a bid such that their opponents each receive quantity q̃(q).

From U(q̂(q); q) ≤ max
q̂∈[0,QR/n] U(q̂; q), we then infer that

E
[
ui (q̃)

]
≤
∫ Q

0
max

q̂∈
[

0, 1
n
Q
R
]U (q̃; q) dq.

In particular, any bid which maximizes U(·; q) pointwise for almost every quantity q will
maximize the bidder’s expected utility. As we showed in Appendix D.2, the first derivative
of U(·; q) is the pointwise first-order condition used to derive the bid b, and is equal to zero
at q̃ = q. Then by the assumption of this theorem, U(·; q) is maximized at q̃ = q for almost
every q, and thus b̂ = b is a best response to bidder i’s opponents submitting the symmetric
bid bj = b.

77When b̃ (q) = b (q) then ϕ ◦ b̃ (q) = q. Because 1 − F (nq) = 0 for q > Q
n , we can write the utility as

E
[
ui (b)

]
=
∫ Q/n

0 (v (q)− b (q)) (1− F (nq)) dq. Because b (q) = v (q) for q ∈
[
Q

R

n , Qn

]
, we can simplify the

utility further to E
[
ui (b)

]
=
∫ QR

/n

0 (v (q)− b (q)) (1− F (nq)) dq.
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Proof of Corollary 1. Denote by ϕn the equilibrium inverse bid when there are n bidders.
Note that for every q ∈ [0, QR

/n) and p ∈ (v(QR
/n), v(q)), the expression

(v (q)− p) (1− F (q + (n− 1)ϕn (p)))

is differentiable in p, nonnegative, and has limit 0 as p→ v(q). To establish the condition in
Theorem 4, it is thus sufficient to show that, for almost all relevant q, the derivative of this
expression with respect to p is zero at most once.

The derivative is

− (1− F (q + (n− 1)ϕn (p)))− (v (q)− p) (n− 1) f (q + (n− 1)ϕn (p))ϕnp (p) . (8)

From the equilibrium derivation in Theorem 3, this derivative is zero at p = bn(q). We now
show that when n is large this derivative is negative for p > bn(q) and positive for p < bn(q).

Our first step is to show that, under the assumptions of the Corollary the slope of the
inverse bid, ϕnp , is bounded and bounded away from zero. Because ϕnp (p) = 1/bnq (ϕn(p)), it
is sufficient to show that the slope of the equilibrium bid, bnq , is bounded and bounded away
from zero. Integrating our bid representation (1) by parts gives

bn (q) = v (q) +
∫ Q

R

n

q
vq (x) (1− F nq,n (x)) dx.

The right-hand expression can be rewritten in terms of per capita supply, giving

bn (q) = v (q) +
∫ Q

R,per capita

q
vq (x)

(
1− F per capita (x)
1− F per capita (q)

)n−1
n

dx.

Then the derivative of the equilibrium bid function is

bnq (q) = n− 1
n

∫ Q
R,per capita

q
vq (x)

(
1− F per capita (x)
1− F per capita (q)

)n−1
n f per capita (q)

1− F per capita (q)dx.

We first show that bnq is bounded away from zero. Recalling that bnq ≤ 0, that v ≤ vq(x) ≤
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v < 0 by assumption, and that 0 < f per capita < f per capita < f
per capita by assumption, we have

bnq (q) ≤ n− 1
n

(
1

1− F per capita (q)

)n−1
n

+1

vf per capita
∫ Q

R,per capita

q
(1− F per capita (x))

n−1
n dx

≤ n− 1
n

(
1

1− F per capita (q)

)n−1
n

+1

vf per capita
∫ Q

R,per capita

q
(1− F per capita (x))

n−1
n
f per capita (x)
f

per capita dx

≤ n− 1
n

(
1

n−1
n

+ 1

)
vf per capita

f
per capita = n− 1

2n− 1

[
vf per capita

f
per capita

]
≤ 1

3

[
vf per capita

f
per capita

]
< 0.

To see that bnq is bounded below follows a similar path,

bnq (q) ≥
 f

per capita(
Q
R,per capita − q

)
f per capita

∫ Q
R,per capita

q
vdx

=
 f

per capita(
Q

per capita − q
)
f per capita

(QR,per capita − q
)
v = f

per capita
v

f per capita .

Then bnq , and hence ϕnp , is bounded and bounded away from zero. Note that these bounds
are independent of the number of bidders n.

Because the density f per capita and its derivative f per capita
q are bounded, and because ϕnp is

bounded uniformly for all n, we can write (8) as

−
(

1− F per capita

(
q + (n− 1)ϕn (p)

n

))
− n− 1

n
(v (q)− p) f per capita

(
q + (n− 1)ϕn (p)

n

)
ϕn (p)

= − (1− F per capita (ϕn (p)))− n− 1
n

(v (q)− p) f per capita (ϕn (p))ϕnp (p)

−
(
F per capita (ϕn (p))− F per capita

(
q + (n− 1)ϕn (p)

n

))

− n− 1
n

(v (q)− p)
(
f per capita

(
q + (n− 1)ϕn (p)

n

)
− f per capita (ϕn (p))

)
ϕnp (p)

= − (1− F per capita (ϕn (p)))− n− 1
n

(v (q)− p) f per capita (ϕn (p))ϕnp (p)− 1
n

(q − ϕn (p)) Ĉ1,
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where

1
n

(q − ϕn (p)) Ĉ1 = −
(
F per capita (ϕn (p))− F per capita

(
q + (n− 1)ϕn (p)

n

))

− n− 1
n

(v (q)− p)
(
f per capita

(
q + (n− 1)ϕn (p)

n

)
− f per capita (ϕn (p))

)
ϕnp (p)

= 1
n

(q − ϕn (p)) cFper capita − 1
n

[
n− 1
n

(v (q)− p)ϕnp (p)
]

(q − ϕn (p)) cfper capita

= 1
n

(q − ϕn (p)) cFper capita − 1
n

(q − ϕn (p)) cδcfper capita

= 1
n

(q − ϕn (p)) (cFper capita − cδcfper capita) .

The constants cFper capita and cfper capita exist and are bounded, independent of p, q, and n,
because f per capita and f per capita

q are bounded. The constant cδ is bounded, independent of p,
q, and n, because v(q) − p and ϕnp (p) are bounded, independent of n. It follows that the
constant Ĉ1 exists and has a uniform bound which is independent of p, q, and n. From our
equilibrium bid representation, we may then write (8) as

n− 1
n

(v (ϕn (p))− p)ϕnp (p)− n− 1
n

(v (q)− p)ϕnp (p)− 1
n

(q − ϕn (p)) Ĉ1

f per capita (ϕn (p)) .

Since f per capita and ϕnp are bounded away from zero, (8) has the same sign as

−
[
(v (ϕn (p))− v (q))− 1

n
(q − ϕn (p)) Ĉ2

]
,

where Ĉ2 = Ĉ1/ϕ
n
p (p) is bounded because ϕnp is bounded away from 0 uniformly for all n.

Further, because the derivative of v is bounded away from zero, there is γ < 0 such that the
derivative we study has the same sign as

−
[
(ϕn (p)− q) γ − 1

n
(q − ϕn (p)) Ĉ2

]
= (ϕn (p)− q)

(
|γ| − 1

n
Ĉ2

)
.

Although the specific values of γ and Ĉ2 depend on p, q, and n, they are nonetheless
uniformly bounded. Since γ is bounded away from zero, it follows that there is n sufficiently
large so that (8) is negative when p > bn(q) and positive when p < bn(q), completing the
proof.
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E.4 Modifying the Proofs to Allow for Reserve Prices

The bound on clearing price established in Theorem 1 implies that a binding reserve price is
equivalent to creating an atom in the supply distribution at the quantity at which marginal
value equals the reserve price. In order to extend the proofs from the prior sections of
Appendix E to the setting that allows reserve prices (as the results are stated in the main
text), we therefore need to extend them to distributions in which there might be an atom
at the upper bound of support Q.78 All our results remain true, and the proofs go through
without much change except for the end of the proof of Theorem 3, where more care is
needed.

The proof of Theorem 3 goes through until the claim that 1−F (Q) = 0; in the presence
of an atom at Q this claim is no longer valid. We thus proceed as follows. We multiply both
sides of equation (7) by (1− F (Q))ρ and conclude that

p (Q) (1− F (Q))ρ = C − ρ
∫ Q

0
f (x) (1− F (x))ρ−1 v

( 1
n
x
)
dx.

Now, let
⇀

F (Q) ≡ limQ′↗Q F (Q′). Because the clearing price and the right-hand integral
are continuous as Q↗ Q, we have

p
(
Q
)(

1−
⇀

F
(
Q
))

= C − ρ
∫ Q

0
f (x) (1− F (x))ρ−1 v

( 1
n
x
)
dx.

The parameter C is determined by this equation. The clearing price function is then

p (Q) =

1−
⇀

F
(
Q
)

1− F (Q)


ρ

p
(
Q
)

+ ρ
∫ Q

Q
f (x) (1− F (x))ρ−1 v

( 1
n
x
)
dx (1− F (Q))−ρ . (9)

Recall from Theorem 1 that p(Q) = v(Q/n). Extending our notation to the auxiliary
distribution FQ,n, we also have

FQ,n(Q)−
⇀

F
Q,n

(Q) = 1−
⇀

F
Q,n

(Q) =

1−
⇀

F
(
Q
)

1− F (Q)


ρ

.

78Starting with a given supply distribution F with support [0, Q] and moving all probability from [QR, Q]
to an atom at QR results in a new distribution F̃ with support [0, QR], with an atom at QR. All results
apply to this new distribution, thus it is without loss of generality to assume that the mass point is at Q.
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Since d/dy[FQ,n(y)] = ρf(y)(1− F (y))ρ−1(1− F (Q))−ρ for all Q, y < Q, we have

p (Q) =
(
FQ,n(Q)−

⇀

F
Q,n (

Q
))

v
( 1
n
Q
)

+
∫ Q

Q
v
( 1
n
x
)
d

dy

[
FQ,n (y)

]
y=x

dx

=
∫ Q

Q
v
( 1
n
x
)
dFQ,n (x) ,

proving our formula for equilibrium stop-out price in the presence of an atom at Q. Noting
that QR

< Q implies an atom in the realized allocation distribution at QR, equation 2 in
Theorem 3 follows. Since equilibrium is symmetric, equation 1 is an immediate corollary. �

E.5 Bids for Irrelevant Quantities

In equilibrium, bids for irrelevant quantities must be sufficiently aggressive so that bidders
do not want to drop their bids for large quantities below the equilibrium minimum clearing
price. Due to market clearing it is sufficient that each subset of n − 1 bidders (i.e., each
bidder’s opponents) submits sufficiently aggressive bids for quantities q ∈ [Q/n,Q/(n− 1)].
We focus on the case when the auction’s reserve price is not binding, because bids below
reserve have no impact on allocation, transfers, or payoffs. In each of the figures in the main
text we plot an example of sufficiently aggressive bids on an interval of irrelevant quantities
containing [Q/n,Q/(n− 1)], as long as the reserve is not binding (cf. Figure 5).

We determine sufficient bid aggression as follows. We assume that bids on relevant
quantities are given by Theorem 3. If a bidder has a profitable deviation given opponent bids
for irrelevant quantities, then there is a profitable deviation if we ignore the bid-monotonicity
constraint. Opponent bids are hence sufficiently aggressive if (but not generally only if) the
bidder cannot improve the marginal contribution of any relevant unit to their expected
utility by reducing the bid for only this unit (and its arbitrarily small neighborhood) below
the minimum clearing price.79 Thus, a sufficient condition for symmetric opponent bids to be
sufficiently aggressive is that bids for irrelevant quantities are differentiable (in quantity) and
the first derivative of the bidder’s payoff in bid is weakly positive at all relevant quantities
and all prices below the equilibrium minimum price. Applying the first-order condition from
Lemma 11, it is sufficient that for all q ∈

[
0, Q

n

]
and p ∈

[
0, v

(
Q
n

)]
we have

− (n− 1) (v (q)− p) f (q + (n− 1)ϕ (p))ϕp (p)− (1− F (q + (n− 1)ϕ (p))) ≥ 0.
79Bids for irrelevant quantities matter only for deviations below the minimum market price. In the proof of

Theorem 4, we establish that there exist bids on irrelevant quantities that sustain a pure-strategy equilibrium.
In particular, Theorem 4 tells us that there are no profitable deviations above the minimum clearing price.
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If submitted bids are linear for irrelevant quantities, b(q)|q>Q/n = β0 +βqq, then ϕp(p) = 1/βq
and the above inequality can be rewritten as

βq ≥ − (n− 1)
[

(v (q)− p) f (q + (n− 1)ϕ (p))
1− F (q + (n− 1)ϕ (p))

]
∀q ∈

[
0, Q
n

]
, ∀p ∈

[
0, v

(
Q

n

)]
.

In our figures we plot irrelevant bids that are linear on [Q/n,Q/(n − 1)] and hence it is
enough to verify that their slope βq satisfies this inequality.

F Proofs for Section 4 (Designing Pay-as-Bid Auctions)

F.1 Proof of Theorem 5

Theorem 5 shows that, when the designer is constrained to a reserve price R and a distribu-
tion over supply F , the optimal mechanism is deterministic. This result is distinct, and does
not follow, from the analysis in Appendix A, which shows that (under regularity conditions
on demand) a seller who can implement stochastic elastic supply prefers to implement a de-
terministic elastic supply curve. In general, fixed supply Q? and reserve R? is insufficiently
elastic to obtain monopoly rents from all bidder signals s, and a seller who can implement
an elastic supply curve will strictly prefer to do so.

Proof of Theorem 5. Consider a pure-strategy equilibrium in a pay-as-bid auction with re-
serve price R and supply distribution F . In Section 3 we proved that the equilibrium is
essentially unique and symmetric. Furthermore, in equilibrium, for any relevant quantity q,
each bidder’s bid equals the resulting clearing price when quantity Q = nq is sold; we denote
this clearing price p(Q;R, s), suppressing in the notation the price’s dependence on F as it
is constant. We denote the resulting equilibrium revenue by π(Q;R, s).

The seller maximizes expected revenue Es
[
πF
]

= Es[
∫Q
0 π (Q;R, s) dF (Q; s)] where πF

denotes the seller’s profits when bidders bid against distribution of supply F . While our
seller designs a supply distribution F that does not depend on s, we first derive a bound on
expected revenue that also holds true for distributions that depend on s, and hence in the
notation we initially write F (Q; s). When bidders’ values are low relative to the reserve price,
and the realized quantity is high, the reserve price is binding and the bidders receive only
a partial allocation. Because the auction is discriminatory and b(Q/n) = p(Q), expected
revenue may be written as

Es
[
πF
]

= Es
[∫ Q

0

∫ QR(y,s)

0
p (x;R, s) dxdF (y; s)

]
.
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Integrating by parts gives

Es
[
πF
]

=Es
{[
− (1− F (y; s))

∫ QR(y,s)

0
p (x;R, s) dx

] ∣∣∣∣∣
Q

y=0

+
∫ Q

0
(1− F (y; s)) p

(
QR (y, s) ; s

)
dQR (y, s)

}
,

where the first addend is zero. Recognizing that Q is continuous in y and that QR
y (y, s) = 1

for v(y/n; s) > R and QR
y (y, s) = 0 for v(y/n; s) < R, we express the expected revenue as

Es
[
πF
]

= Es

∫ Q
R(s)

0
(1− F (y; s)) p

(
QR (y, s) ; s

)
dy

 .
Theorem 3 allows us to express Es

[
πF
]
as

Es

∫ Q
R(s)

0
(1− F (y; s))

(1− F y,n
(
Q
R (s) ; s

))
v
( 1
n
Q
R (s) ; s

)
+
∫ Q

R(s)

y
v
( 1
n
x; s

)
dF y,n (x; s)

 dy
 ,

where F y,n (x; s) = 1 −
(

1−F (x;s)
1−F (y;s)

)n−1
n is the c.d.f. of the weighting distribution from the

theorem.80 Integrating by parts the inner integral and substituting in for F y,n gives:

Es

∫ Q
R(s)

0
(1− F (y; s)) v

( 1
n
y; s

)
+ (1− F (y; s))

1
n

∫ Q
R(s)

y

1
n
vq

( 1
n
x; s

)
(1− F (x; s))

n−1
n dxdy

 .
Within the expectation, we may change the order of integration of the right-hand double
integral to obtain

∫ Q
R(s)

0
(1− F (y; s))

1
n

∫ Q
R(s)

y

1
n
vq

( 1
n
x; s

)
(1− F (x; s))

n−1
n dxdy

=
∫ Q

R(s)

0

∫ x

0
(1− F (y; s))

1
n dy

1
n
vq

( 1
n
x; s

)
(1− F (x; s))

n−1
n dx

≤
∫ Q

R(s)

0

1
n
xvq

( 1
n
x; s

)
(1− F (x; s)) dx,

80The outer integral in the displayed formula for Es
[
πF
]
is taken over [0, QR (s)], thus y ≤ Q

R (s) and
F y,n(QR (s)) is well-defined. The left-hand addend in the integral results from the fact that, when QR (s) <
Q—that is, when signal-s bidders have low values for the maximum quantity, v̂(Q; s) < R—there is a mass
point in the resulting distribution of realized aggregate allocation at QR (s); this same expression is seen in
equation (9) in Appendix (E.4).
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where the inequality follows from the facts that vq ≤ 0, and 1 − F (y; s) ≥ 1 − F (x; s) for
y ≤ x. Substituting y for x and plugging this bound in the above expression for expected
profits, we have

Es
[
πF
]
≤ Es

∫ Q
R(s)

0
(1− F (y; s))

(
v
( 1
n
y; s

)
+ 1
n
yvq

( 1
n
y; s

))
dy

 .
Notice that xvq(x/n; s)/n+v(x/n; s) = πδxq (x; s), where πδx(x; s) = xv(x/n; s) is the revenue
from selling quantity x at price v(x/n; s). Integrating by parts gives

Es
[
πF
]
≤ Es

∫ Q
R(s)

0
πδxq (x; s) (1− F (x; s)) dx

= Es

πδQR(s)
(
Q
R (s) ; s

) (
1− F

(
Q
R (s) ; s

))
+
∫ Q

R(s)

0
πδx (x; s) dF (x; s)


= Es

[∫ Q

0
πδQR(x,s)

(
QR (x, s) ; s

)
dF (x; s)

]
. (10)

As the seller designs a distribution of supply F that is independent of s, this bound takes
the form

Es
[
πF
]
≤ Es

[∫ Q

0
πδQR(x;s)

(
QR (x, s) ; s

)
dF (x)

]
=
∫ Q

0
Es
[
πδQR(x;s)

(
QR (x; s) ; s

)]
dF (x) .

Since there are no cross-terms in this integral, the right-hand side is maximized at a degener-
ate distribution which maximizes Es[πδQR(x;s)(QR(x, s); s)].81 This is exactly the problem of
choosing optimal feasible deterministic supply given the reserve price R. It follows that ex-
pected revenue is weakly dominated by expected revenue with optimal deterministic supply,
hence optimal supply is deterministic.

F.2 Proof of Proposition 1

Let F̂ be the distribution of the random supply cap, independent of the bidders’ signal s
and uncapped aggregate supply Q. Then the distribution of capped aggregate supply is F ,
where

F (Q) = 1− (1− F (Q))
(
1− F̂ (Q)

)
.

In equilibrium, bidders will bid as if bidding against uncapped supply with distribution F .
By our assumptions, a pure-strategy equilibrium exists in this auction. Denote by pF (Q; s)

81This maximization has a solution because of the continuity of πδQ(Q; s) in Q and the compactness of
the interval of feasible aggregate quantities.
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the resulting equilibrium clearing price when the bidders’ signal is s and available supply is
Q. Then expected revenue is

E [π̂] = Es
[∫ Q

0

∫ Q

0
pF (x; s) dxdF (Q)

]
= Es

[∫ Q

0

(
1− F (Q)

)
pF (Q; s) dQ

]
.

We show first that this revenue is below revenue in an auction where the auctioneer commits
to a random supply cap distribution F̂ and announces the supply cap (but not supply) prior
to the auction being run.

If the auctioneer announces a supply cap of Q̂, but otherwise leaves the distribution of
aggregate supply unaffected, the equilibrium clearing price when the bidders’ signal is s and
available supply is Q ≤ Q̂ is pQ̂(Q; s).82 Then expected revenue is

E
[
πQ̂
]

= Es
[∫ Q

0

∫ min{Q,Q̂}
0

pQ̂ (x; s) dxdF (Q)
]
.

If the auctioneer commits to distribution F̂ over supply caps, their expected revenue is

E
[
π̂Q̂
]

= Es
[∫ Q

0

∫ Q

0

∫ min{Q,Q̂}
0

pQ̂ (x; s) dxdF (Q) dF̂
(
Q̂
)]

= Es

∫ Q

0

(
1− F

(
Q̂
))
pQ̂
(
Q̂; s

)
dQ̂+

∫ Q

0

(
1− F̂

(
Q̂
)) ∫ Q̂

0
(1− F (Q)) dp

Q̂

dQ̂
(Q; s) dQdQ̂

 .
Then the difference in revenues between announcing the supply cap and leaving it unknown
is

Es
[
π̂Q̂ − π̂

]
= Es

 ∫ Q

0

(
1− F

(
Q̂
)) (

pQ̂
(
Q̂; s

)
− pF

(
Q̂; s

))
dQ̂

+
∫ Q

0

(
1− F̂

(
Q̂
)) ∫ Q̂

0
(1− F (Q)) dp

Q̂

dQ̂
(Q; s) dQdQ̂

.
(11)

To analyze this revenue difference recall that pQ̂(Q̂; s) = v̂
(
Q̂; s

)
by Theorem 1. Inte-

grating by parts we express the first integral summand as

∫ Q

0

(
1− F̂

(
Q̂
)) (

1− F
(
Q̂
)) [

pQ̂
(
Q̂; s

)
− pF

(
Q̂; s

)]
dQ̂

=
∫ Q

0

(
1− F

(
Q̂
)) [
−
∫ Q

Q̂
v̂q (x; s)

(
1− F Q̂,n (x)

)
dx

]
dQ̂.

82Recall that when the underlying distribution satisfies the assumptions of Theorem 4, then there exists
a pure-strategy equilibrium for any deterministic supply cap.
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By our bid representation Theorem 3, pQ̂ (Q; s) =
∫Q
Q v̂

(
min

{
x, Q̂

}
; s
)
dFQ,n (x), and hence

dpQ̂

dQ̂
(Q; s) =

∫ Q

Q̂
v̂q
(
Q̂; s

)
dFQ,n (x) =

(
1− FQ,n

(
Q̂
))
v̂q
(
Q̂; s

)
=
1− F

(
Q̂
)

1− F (Q)


n−1
n

v̂q
(
Q̂; s

)
.

Substituting into the second integral summand of (11) and integrating by parts we rewrite
the second summand as

∫ Q

0

(
1− F

(
Q̂
)) (

1− F
(
Q̂
))− 1

n v̂q
(
Q̂; s

) ∫ Q̂

0
(1− F (Q))

1
n dQdQ̂.

Altogether, the revenue difference (11) reduces to

Es
[
π̂Q̂ − π̂

]
= Es

− ∫ Q

0

∫ Q

Q̂

(
1− F

(
Q̂
))
v̂q (Q; s)

(
1− F Q̂,n (Q)

)
dQdQ̂

+
∫ Q

0

∫ Q̂

0

(
1− F

(
Q̂
))
v̂q
(
Q̂; s

) 1− F (Q)
1− F

(
Q̂
)
 1

n

dQdQ̂

.
We now show that the expression within the right-hand expectation is weakly positive

for all bidder signals s; hence, we drop the expectation over the bidders’ signal. To show
this it is sufficient to show that

−
∫ Q

0

∫ Q

Q̂

(
1− F

(
Q̂
))
v̂q (Q; s)

(
1− F Q̂,n (Q)

)
dQdQ̂

≥ −
∫ Q

0

∫ Q̂

0

(
1− F

(
Q̂
))
v̂q
(
Q̂; s

) 1− F (Q)
1− F

(
Q̂
)
 1

n

dQdQ̂.

Note that left-hand integral is taken over the set Q = {(Q, Q̂) ∈ [0, Q]2 : Q ≥ Q̂} and the
right-hand integral is taken over the set QC = {(Q, Q̂) ∈ [0, Q]2 : Q̂ ≥ Q}. Thus we may
swap Q and Q̂ in the right-hand integral and integrate instead over Q, and it is sufficient to
show that

−
∫
Q

(
1− F

(
Q̂
))
v̂q (Q; s)

(
1− F Q̂,n (Q)

)
dQdQ̂

≥ −
∫
Q

(
1− F (Q)

)
v̂q (Q; s)

 1− F (Q)
1− F

(
Q̂
)
 1

n

dQdQ̂.
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Finally, since v̂q ≤ 0, it is sufficient to show that for all (Q, Q̂) ∈ Q,

(
1− F

(
Q̂
)) (

1− F ,̂n (Q)
)
≥
(
1− F (Q)

) 1− F (Q)
1− F

(
Q̂
)
 1

n

.

Dividing through by (1− F (Q)), this is equivalent to

1− F
(
Q̂
)

1− F (Q)


1
n

≥

 1− F (Q)
1− F

(
Q̂
)
 1

n

.

Since Q ≥ Q̂ for all (Q, Q̂) ∈ Q, the left-hand side is greater than one and the right-hand
side is less than one. Then Es[π̂Q̂] ≥ Es[π̂] and announcing the supply cap before bids are
submitted weakly improves the seller’s revenue.

It thus follows that there is some deterministic supply cap Q̂ such that E[πQ̂] ≥ E[π̂Q̂].
The continuity of the expected revenue in the deterministic supply cap and the compactness
of the relevant interval of supply caps hence imply that setting a deterministic supply cap is
revenue optimal.

G Robust Selection and the Proofs for Section 5 (The
Auction Design Game)

G.1 Robust and Semi-truthful Equilibria in Uniform Price

In the uniform-price auction, equilibrium bidding strategies are unique when the support
of supply is sufficiently large as established by Klemperer and Meyer [1989]; for their ar-
gument to apply in our setting, it is sufficient that the support of supply contains [0, Q],
where Q ≥ sups nv−1 (R; s). Because the bids in Klemperer and Meyer’s equilibrium remain
best responses even after the bidders learn the realization of supply, these bids remain in
equilibrium for all supply distributions (assuming the reserve price is kept the same). This
observation allows us to re-interpret Klemperer and Meyer’s uniqueness result as a selection
of an equilibrium that is robust to bidders’ beliefs about the distribution of supply. In Pycia
and Woodward [2023a], we define robust bids as follows:

Definition 2. [Robust Bids] Given supply distribution F and reserve price R, a bid
profile (bi)ni=1 is robust to uncertainty if for any ε > 0 there is δ > 0 such that for any supply
distribution F̃ with supQ∈R |F (Q) − F̃ (Q)| < δ, all equilibrium bid profiles (b̃i)ni=1 are such
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that sups,q∈[0,Q̃R(s)] |bi(q; s)− b̃i(q; s)| < ε for all bidders i, where

Q̃R (s) = min
{

max SuppF
1
n
Q, max SuppF̃

1
n
Q, v−1 (R; s)

}
.

In the uniform-price auction, bids for quantities which are never marginal never affect
utility, and are relevant only in ensuring that there is no profitable deviation from a particular
best response bid curve. For example, when supply is deterministic bidders can coordinate on
collusive-seeming equilibria, in which the clearing price is low, and high bids for nonmarginal
units ensure it is not profitable for any bidder to increase their allocation by increasing their
bid. The seller has the ability to almost-costlessly eliminate these equilibria by adding a small
amount of randomness to aggregate supply, ensuring that all quantities remain potentially
marginal. Robust bids are therefore focal in our equilibrium analysis of the uniform-price
design game: bidders cannot credibly commit to bidding below robust bids, because the
seller can introduce a small amount of randomness to induce (at worst) a robust bidding
equilibrium.

Lemma 15. [Symmetric Equilibrium in Uniform Price] For all signals s and any price
p(s) ∈ [R, v(QR(s)/n; s)], there is a symmetric equilibrium of the uniform-price auction in
which all bidders bid

b (q; s) = v (q; s) +
∫ 1

n
Q
R(s)

q

(
q

x

)n−1
vq (x; s) dx−

 q
1
n
Q
R (s)

n−1 (
v
( 1
n
Q
R (s) ; s

)
− p (s)

)
.

Proof. We follow the approach of Klemperer and Meyer [1989]: they show that there is
continuum of asymmetric equilibria in uniform price, and we leverage their analysis to show
that all prices given above can be supported in symmetric equilibria. First note that the
above bid function b is decreasing, b (q) ≤ v (q) at each quantity q ∈ [0, QR(s)/n], and at
the maximum quantity QR(s)/n bid b

(
Q
R(s)/n

)
∈ [R, v(QR(s)/n; s)]; in particular the bids

on quantities q ∈ [0, QR(s)/n] are above the reserve price. In the uniform-price auction, the
first-order conditions on the inverse bid ϕ are

(v (Q− (n− 1)ϕ (p) ; s)− p) +
(
Q− (n− 1)ϕ (p)

n− 1

)
1

ϕp (p) = 0, ∀Q. (12)
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Woodward [2021] shows that the symmetric solution to (12) is

b (q; s) = v (q; s) +
∫ 1

n
Q
R(s)

q
exp

(
− (n− 1)

∫ x

q

dz

z

)
vq (x; s) dx− C exp

− (n− 1)
∫ 1

n
Q
R(s)

q

dx

x


= v (q; s) +

∫ 1
n
Q
R(s)

q

(
q

x

)n−1
vq (x; s) dx−

 q
1
n
Q
R (s)

n−1

C,

where C is a parameter that can be set so that b(QR(s)/n; s) = p(s). Thus to show that
b(·; s) is an equilibrium bidding function, it is sufficient to show that the left-hand side of
(12) is negative for p′ > p and positive for p′ < p; equivalently, since the equation is solved
at ϕ(p) = Q/n, for the latter point to hold it is sufficient to show that the above expression
is negative for Q > nϕ(p′) and positive for Q < nϕ(p′). We thus check

sign
[
(v (Q− (n− 1)ϕ (p′) ; s)− p′) + Q− (n− 1)ϕ (p′)

(n− 1)ϕp (p′)

]

= sign
[(

(v (Q− (n− 1)ϕ (p′) ; s)− p′) + Q− (n− 1)ϕ (p′)
(n− 1)ϕp (p′)

)

−
(

(v (nϕ (p′)− (n− 1)ϕ (p′) ; s)− p′) + nϕ (p′)− (n− 1)ϕ (p′)
(n− 1)ϕp (p′)

)]
︸ ︷︷ ︸

=0

= sign
[
(v (Q− (n− 1)ϕ (p′; s))− v (nϕ (p′)− (n− 1)ϕ (p′) ; s)) + Q− nϕ (p′)

(n− 1)ϕp (p′)

]
.

Recalling that ϕp < 0, when Q < nϕ(p′) the leading and trailing expressions are positive,
and when Q > nϕ(p′) the leading and trailing expressions are negative, as desired.

The existence of semi-truthful and robust equilibria is an immediate consequence of
Lemma 15. Proposition 2 gives the explicit form of robust equilibrium bids.

Proposition 2. [Bids Robust to Uncertainty] The unique uniform-price equilibrium bid
profile that is robust to uncertainty is given by

b (q; s) =
(

q

v−1 (R; s)

)n−1

R + (n− 1)
∫ v−1(R;s)

q

(
q

x

)n−1 v (x; s)
x

dx, (13)

or, equivalently,

b (q; s) = v (q; s) +
∫ v−1(R;s)

q

(
q

x

)n−1
vq (x; s) dx.

Proof. With unbounded supply, expression (13) gives the unique solution to the equilibrium
first-order conditions in the uniform-price auction (Lemma 15). Then (bi)ni=1 is the unique
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robust uniform-price bid profile.

We henceforth refer to the above uniform-price bid function as the robust uniform-price
bid. The robust uniform-price bid is continuous, differentiable, strictly below marginal values
for all q ∈ (0, v−1(R; s)), and equal to marginal values for q ∈ {0, v−1(R; s)}. No matter
which auction format is employed, optimal supply Q? is strictly positive. In the pay-as-
bid design game the optimal deterministic quantity must be binding for some bidder types,
Q?PAB < sups v−1(R; s), provided the value space is rich. Since robust uniform-price bids are
strictly below value on (0, Q?PAB/n] for all types s such that Q?PAB < v−1 (R; s), the pay-
as-bid auction generates strictly greater revenue than the uniform-price auction with robust
bidding. Because, in the auction design game, bidders can select an equilibrium on the basis
of the supply and reserve chosen by the auctioneer, revenue dominance of deterministic pay
as bid is sufficient to prove Lemma 1.

Proof of Lemma 1. We first show that, holding bids fixed, optimal supply is deterministic
in the uniform-price auction. Given bid b and distribution of per-capita supply F µ, the
expected revenue obtained from a given bidder in the uniform-price auction is

Es

(1− F µ
(
Q
R (s)

))
RQ

R (s) +
∫ Q

R(s)

0
qb (q; s) dF µ (q)


= Es

∫ Q
R(s)

0
(b (q; s) + qbq (q; s)) (1− F µ (q)) dq


=
∫ Q

0
Es
[
b (q; s) + qbq (q; s)

∣∣∣QR (s) > q
]

(1− F µ (q)) dq =
∫ Q

0
J (q; s) (1− F µ (q)) dq.

It follows that the optimal distribution F µ is deterministic, and is equal to 0 below some
threshold and 1 above it.

By Proposition 2, robust uniform-price bids can be represented as

b (q; s) = v (q; s) +
∫ Q̂(s)

q

(
q

x

)n−1
vq (x; s) dx.

Because vq < 0, these bids are strictly below values at all q < Q̂(s). And because optimal
supply (holding bids fixed) is deterministic, optimal revenue under robust bids is strictly
below optimal pay-as-bid revenue: otherwise there is a reserve R and deterministic quantity
Q that yield expected uniform-price revenue equal to expected pay-as-bid revenue, contra-
dicting the richness of the value space.

Since the maximum expected revenue obtained under robust bids is strictly below the
optimal expected revenue in the pay-as-bid auction, it is sufficient to show that when ε > 0
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is small and random supply is supported on [Q?PAB − ε,Q?PAB + ε] and the reserve price is
R ∈ [R?PAB − ε, R?PAB + ε], equilibrium uniform-price revenue under semi-truthful bids is
close to optimal pay-as-bid revenue. A lower bound on this revenue is

Es
[∫ Q?PAB+ε

Q?PAB−ε
Q
R (Q; s) v

( 1
n
Q
R (Q; s) ; s

)
dF (Q)

]
≥ Es

[
Q
R
(
Q
?PAB − ε; s

)
v
( 1
n
Q
R
(
Q
?PAB + ε; s

)
; s
)]
.

Because QR is continuous in Q and R, and because R → R?PAB as ε ↘ 0, the right-hand
side converges to

Es
[
Q
R?PAB (

Q?PAB; s
)
v
( 1
n
Q
R?PAB (

Q?PAB; s
)

; s
)]
.

This is exactly optimal pay-as-bid revenue. Then suppose that bidders play semi-truthful
bids when the auctioneer selects reserve R and distribution F , and play robust bids otherwise.
Provided ε > 0 is sufficiently small, reserve R and distribution F will yield more revenue to
the auctioneer than any other selection. The result follows.

G.2 Deterministic Revenue Bound in Uniform Price

Lemma 16. [Deterministic Dominance in Uniform Price] For any equilibrium of the
uniform-price design game ((R,F ), b), there is a deterministic-supply equilibrium ((R?, F ?), b?(·; s, R?, F ?))
that generates weakly higher seller revenue and has the same on-path bids.

Proof. With symmetrically-informed bidders, equilibrium bids in the uniform-price auction
are optimal for every realization of supply, a point first made by Klemperer and Meyer [1989].
For a given bidder, every realization of supply determines a residual supply curve correspond-
ing to the demands of the other bidders, and the given bidder’s bid effectively serves to select
the price-quantity pair from this residual supply curve; this choice does not depend on choices
at other realizations of supply as long as the resulting bid curve is downward-sloping. In
effect, two supply distributions with the same support admit the same set of equilibria, and
if one supply distribution has a smaller support than another, its set of equilibrium bids is
a weak superset of the other. This implies that the revenue-maximizing equilibrium with
deterministic supply is also revenue-maximizing among all possible equilibria.

G.3 Proof of Theorem 7

In the proof below we decorate market outcome functions with superscripts denoting the
relevant mechanism, where helpful. For example, p?UP is the clearing price in the uniform-
price auction and p?PAB is the clearing price in the pay-as-bid auction.
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Proof of Theorem 7. As discussed in Theorem 5 and Lemma 16, we may restrict attention to
optimal deterministic supply distributions in both the pay-as-bid and uniform-price auctions.
Revenue maximization may then be expressed as a per-agent quantity q? and clearing price
p?; for signals s such that v(q?; s) ≥ p? it is without loss to assume that the total allocation is
nq?—there is sufficient demand for the total quantity at the reserve price—while for signals
s such that v(q?; s) < p? it is clear that some total quantity nq′ < nq? will be allocated. The
seller’s expected revenue is then an expectation over bidder signals,

Es [π] = Es [nq (q?, p?; s) · p (q?, p?; s)] .

The quantity allocated under the uniform-price auction equals the quantity allocated under
the pay-as-bid auction, qUP(q?, p?; s) = qPAB(q?, p?; s), whenever v(·; s) is strictly decreasing
at this quantity, or when v(·; s) > p? at this quantity.83 Since we have assumed that v(·; s) is
strictly decreasing, the quantity allocation depends only on q? and p? and not on the mech-
anism employed. Additionally, it is the case that p?UP(q?, p?; s) = p?PAB(q?, p?; s) whenever
v(q?; s) < p?. Let S be the set of such s,

S = {s′ : v (q?; s) < p?} .

Then we have

Es [π] = p? Pr (s ∈ S)Es [nq (q?, p?; s)|s ∈ S] + nq? Pr (s /∈ S)Es [p (q?, p?; s)|s /∈ S] .

The left-hand term is independent of the mechanism employed, while the right-hand term
depends on the mechanism only via the expected clearing price. In the pay-as-bid auction, we
have seen that p(q?, p?; s) = v(q?; s) for all s /∈ S, while in the uniform-price auction any price
p ∈ [p?, v(q?; s)] is supportable in equilibrium. It follows that the pay-as-bid auction weakly
revenue dominates the uniform-price auction, and generally will strictly do so. That the
seller-optimal equilibrium of the uniform-price auction is revenue-equivalent to the unique
equilibrium of the pay-as-bid auction arises from the selection of p?UP(q?, p?; s) = v(q?; s) for
all s /∈ S.

83In the latter case there is excess demand, so all units will be allocated. In the former case all units are
allocated at the reserve price; there is a possible difference in allocation when bidders’ marginal values are
flat over an interval of quantities at the reserve price, since bidders are indifferent between receiving and not
receiving these quantities.
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H Proofs for Appendix A (Elastic Supply)

H.1 Proof of Theorem 8

For each bidder, we can restrict attention to bids that, at each quantity, are always weakly
below the bidder’s marginal value; re-introducing the removed strategies will not break the
mixed strategy equilibrium whose existence in the restricted space we are now showing. The
bidders’ payoffs come then from a compact space. Reny [1999] gives us the existence of mixed-
strategy equilibria because the mixed-strategy extension of the pay-as-bid auction because
this extension is better-reply secure. In light of Reny’s analysis, to establish better-reply
security it is enough to recognize that bidders’ payoffs are reciprocally upper semicontinuous
and that the mixed-strategy extension is payoff secure.

We first establish reciprocal upper semicontinuity. Note that we can write bidder i’s
payoff as u(bi) = Eqi [

∫ qi
0 v(x)− bi(x)dx] = Eqi [

∫ qi
0 v(x)dx]−Eqi [

∫ qi
0 bi(x)dx]. Let (βj,t)∞j=1 be a

joint strategy profile, and assume that βj,t → β̄j for all bidders j. If the limiting distribution
of quantity profiles equals the distribution of quantity profiles at the limit β̄j, then utility
is convergent and hence vacuously satisfies reciprocal upper semicontinuity. Thus if u is not
reciprocally upper semicontinuous at β̄ it must be that the limiting distribution of quantity
profiles does not equal the distribution of quantity profiles at the limit β̄j, and that bidder
i’s quantity drops discontinuously at this limit. Because aggregate quantity cannot be lost
in the limit, and because the reserve price is a weak lower bound (i.e., any bid b ≥ p may be
allocated) this discrete drop is possible only if tie-breaking at the limiting strategy differs
from tie-breaking near the limiting strategy—that is, if a bidder occasionally wins discretely
less at the limit than in the limit—which in turn is only possible if, at the limit, at least two
bidders have flat bids at identical prices. Since bids are flat and marginal values are strictly
decreasing and weakly below values, these two bidders’ marginal values are strictly above
bids almost everywhere on this flat section of the bid curve. By market clearing one bidder’s
loss is another bidder’s gain, hence if one bidder’s payoff drops discontinuously at the limit,
another’s must rise.

To see that Reny’s payoff security obtains, fix a bidder i and a profile of bidders’ mixed
strategies. If i replaces each strategy bi in the support of their mixed strategy with a
strategy that bids bi (q) + min(ε/Q, vi (q) − bi (q)) on each unit q ≤ Q, then the resulting
mixed strategies secures the expected payoff at the original strategy profile minus ε.
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H.2 Proof of Theorem 9 (Existence and Uniqueness with Elastic
Supply)

Proof. Let S be the increasing supply function. To establish the existence of equilibrium,
note that if S (0) ≥ nv−1 (0), then there is an equilibrium in which all bidders submit flat
bids at price 0. Thus, in the existence proof, we can assume that S (0) < nv−1 (0). Because
the monopolist’s problem maxQQv(Q/n) has a finite solution, v decreases to 0 as quantity
grows. Because v is continuous, there exists some aggregate quantity Q∗ such that

sup {P : S (P ) < Q∗} ≤ v (Q∗/n) ≤ inf {P : S (P ) > Q∗} .

The strategy profile in which each bidder i bids bi (q) = v (Q∗/n) on all units q ≤ Q∗/n

and bids less than v (Q∗/n) but sufficiently high on units above Q∗/n then constitutes an
equilibrium.

Indeed, by right-continuity of supply, S (v (Q∗/n)) /n ≥ Q∗/n, and hence the definition
of pay as bid implies that, under strategies bi, each bidder wins Q∗/n units. Given these
strategies of other bidders, to win more than Q∗/n units the bidder would need to pay
weakly more than their marginal value for each additional unit; hence there are no profitable
deviations in which the bidder raises any part of their bid (note that monotonicity of bids
ensures that raising a bid on any quantity above v (Q∗/n) forces the bidder to raise the bids
on all lower quantities). If v (Q∗/n) = 0 then there are also no profitable deviations in which
the bidder lowers the bids. It remains to consider deviations in which the bidder lowers
part of the bid while v (Q∗/n) > 0; by assumption bidder’s true marginal values are strictly
decreasing at all quantities q < Q∗/n. Thus under the above profile of strategies the bidder
obtains strictly positive gains from the allocation of any quantity q < Q∗/n. By lowering
the bid for any of these quantities, the bidder loses some of these quantities, and as long
opponents’ bids on quantities above Q∗/n remain sufficiently high, we can ensure that no
such deviation is profitable.

To establish the essential uniqueness of this equilibrium note that the analysis from the
proof of Theorem 1 allows us to conclude that on the maximum unit each bidder might
receive, the bidder pays her marginal value. Letting Q̂(s) be the aggregate quantity awarded
in equilibrium under supply curve S(·), it cannot be that p?(Q̂(s); s) > v(Q̂(s)/n; s), since
bids on relevant quantities are weakly below values. If, instead, p?(Q̂(s); s) < v(Q̂(s)/n; s),
the arguments from the proof of Theorem 1 apply; indeed, they are strengthened by the fact
that a small increase in bid increases allocation not only by beating opponent bids, but also
by increasing the clearing price and moving up the supply curve.

Because each bidder bids b?(Q̂(s)/n; s) = v(Q̂(s)/n; s) in any equilibrium, each bidder’s

44



allocation is Q̂(s)/n. This allocation is deterministic, conditional on the bidder-common
signal s. Then any bid curve b such that b(q) > v(Q̂(s)/n; s) for some q > 0 is wasteful:
it does not affect the resulting allocation, and

∫ Q̂(s)/n
0 b(q)dq >

∫ Q̂(s)/n
0 b?(q; s)dq. It follows

that b?(q) = v(Q̂(s)/n; s) for all q ≤ Q̂(s)/n, and equilibrium bids are unique for all relevant
quantities.

H.3 Proof of Lemma 2

As we consider the special case of the seller who knows the bidders’ values, we simplify
notation and suppress the signal while writing value and bid functions.

H.3.1 Preliminary Definitions

Recall that we defined the supply-reserve distribution K (Q;R) in Appendix A. For sim-
plicity, we carry out the analysis under the assumption that supply-reserve distribution K
is continuously differentiable. In Remark 1 we show that this assumption may be dropped.

Holding the supply-reserve distribution K fixed, fix a bidder i and consider the ag-
gregate demand of her opponents. Allowing for mixed strategies and asymmetric and
asymmetrically-informed bidders, we denote the aggregate demand of bidder i’s opponents by
Q(·; ξ), where ξ indexes the joint distribution of her opponents’ potentially mixed strategies.
As with supply-reserve distribution K, we assume that aggregate demand Q is continuously
differentiable, and show in Remark 1 that this assumption may be dropped. Although we
separately specify the supply-reserve distribution K and the mixed strategy index ξ because
the former is controlled by the seller while the latter is not, a bidder’s set of best responses
does not depend on the source of randomness in that bidder’s residual supply. Bidders’
ex post utility is determined by realized quantity and payment, and thus the dependence
of interim utility on the joint distribution of quantity and payment is unaffected by the
introduction of a random reserve price, asymmetric information among bidders, and the
possibility of mixed strategies. Thus, the bidder’s first order condition is unchanged from
the analysis in Lemma 11 (in Supplementary Appendix D), and the random reserve affects
only the distribution of realized quantity. In the language of Lemma 11,

Gi (q; b) = Eξ [K (q +Q (b; ξ) ; b)] ,
and Gi

b (q; b) = Eξ [KQ (q +Q (b; ξ) ; b)Qp (b; ξ) +KR (q +Q (b; ξ) ; b)] .
(14)

For example, when the reserve price is fixed, KR = 0 for all relevant prices, and (14) is
identical to what we find in equation (10).
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We aim to show that the seller can induce the same bidder behavior by implementing
a random reserve without constraining supply, in which case KQ = 0, and the bidder’s
pointwise first order condition is

(v (q)− b (q))Eξ [KR (q +Q (b (q) ; ξ) ; b)] = Eξ [K (q +Q (b (q) ; ξ) ; b)] .

As KQ = 0 implies that K is independent of q (and thus Q is independent of ξ), we write
this in terms of only the distribution of reserve prices FR,

(v (ϕ (p))− p)FR
p (p) = FR (p) .

Thus a key simplification associated with random reserve and unconstrained supply is that
the optimal bid is determined by the reserve distribution FR and does not depend on oppo-
nent bids. Furthermore, for each quantity the optimal bid is either pointwise optimal, or this
quantity is part of an interval on which the first order conditions are ironed, cf. Woodward
[2016]. We capture these optimality conditions in the concept of first-order optimal bids
defined as follow.

Definition 3. [First-order optimality] Given a distribution of reserve prices FR, we say
that b is first-order optimal with respect to FR if:

1. If b is strictly decreasing at q, then it solves the pointwise first order condition: (v(q)−
b(q))FR

p (b(q)) = FR(b(q)).

2. If b is constant in a neighborhood of q then b(q) is a mass point of FR and it solves
the ironed first order condition:

(
FR (b (q))− FR (b)

)
(v (ϕ (p))− b) = (b (q)− b)FR

(
p
)
, where b = lim

q′↘ϕ(p)
b (q′) .

Intuitively, the ironing conditions state that the marginal gain from slightly extending the
constant interval (marginal additional quantity with probability FR(b(q)) − FR(b)) must
equal the marginal cost from the same (marginal additional payment with probability FR(b)).
As b is weakly decreasing, any quantity q belongs to either an interval on which b is flat or
to an interval on which b is strictly decreasing (and it might be an endpoint of both types of
intervals simultaneously). The structure of these intervals can be complex, but there is at
most a countable number of them.

Although optimal bids are first-order optimal the converse need not be true: first-order
optimality only implies that a bid satisfies pointwise first order conditions where applicable,
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and ironing conditions elsewhere. In deriving the revenue bounds below, we assume only
that the first-order conditions are satisfied, not that bids are optimal. Because any (glob-
ally) optimal bid function satisfies the first-order optimality conditions above, the bound on
revenues applies to optimal bids.

Let Gi,K(·; b,Q) be the distribution of realized quantity given supply-reserve distribution
K, bid function b, and potentially random opponent demand Q, and let Gi,R(·; b) be the
distribution of realized quantity given reserve distribution FR and bid function b. As men-
tioned above, Gi,R does not depend on Q because, under random reserve, supply does not
depend on opponent bids. Letting ξ represent randomness in residual supply (e.g., mixed
strategies for a bidder’s opponents)84 we have

Gi,R (q; b) = 1− FR (b (q)) ,
d

dq
Gi,R (q; b) = −FR

p (b (q)) bq (q) ;

Gi,K (q; b,Q) = Eξ [K (q +Q (b (q) ; ξ) , b (q))] ,
d

db
Gi,K (q; b,Q) = Eξ [Kq (q +Q (b (q) ; ξ))Qp (b (q) ; ξ) +Kp (q +Q (b (q) ; ξ) , b (q))] ,

d

dq
Gi,K (q; b,Q) = d

db
Gi,K (q; b,Q) bq (q) + Eξ [Kq (q +Q (b (q) ; ξ))] . (15)

The expected revenue from bidder i when the bidder bids b and the bid leads to quantity
distribution Gi is given by π (b;Gi) =

∫Q
0
∫ q
0 b (x) dxdGi(q). Because our analysis focuses on

changes to the distribution of supply which increase the revenue obtained from a fixed agent
i, in the notation below we drop the superscript i and simply write GR for Gi,R and GK for
Gi,K .

H.3.2 The Optimality of Random Reserve with Known Values

We begin with a bid function b which is a best response to residual supply distribution
Gi(·; b) and construct a reserve price distribution and bidder’s best response to this new
distribution that raise more revenue.

Lemma 17. Let b be a best response bid curve under residual supply distribution Gi, gener-
ated by supply-reserve distribution K and stochastic aggregate demand Q. There is a reserve
distribution FR and a first-order optimal response bR to FR such that π

(
bR;GR

)
≥ π (b;Gi).

While the bound on revenue in Lemma 17 might depend on the equilibrium selected, the
84In the main text we focus on pure strategies. In this analysis we allow for mixed strategies, allowing us

to show that all randomness—exogenous or otherwise—is detrimental to the seller’s revenue.
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subsequent analysis will show that this bound is weakly lower than the revenue in a unique
equilibrium under deterministic elastic supply.

Proof. For clarity, we proceed under the assumption that supply-reserve distribution studied
K and aggregate residual demand Q are continuously differentiable. Following the derivation
of the result for smooth K and Q, we comment on extending the argument to potentially
discontinuous K and Q.

We construct bR and FR by first constructing an auxiliary distribution GR. As a prepara-
tory step in the construction ofGR, recall that the discussion of the previous subsection shows
that under a random reserve price that induces differentiable quantity distribution GR, in
any interval in which b is strictly decreasing, b solves the pointwise first-order condition

(v (q)− b (q))FR
p (b (q)) = F (b (q)) .

In our construction of GR we ensure that the pointwise first order conditions of an agent
bidding b are satisfied; that is,

− (v (q)− b (q))GR
q (q) =

(
1−GR (q)

)
bq (q) ,

and thus
d

dq
ln
[
1−GR (q)

]
= bq (q)
v (q)− b (q) .

Given any initial value of GR(q) (initial condition of the ODE), we can solve this differential
equation for any differentiable b < v (q). In particular, for any quantity q̃ such that b is
strictly decreasing on (q̃, q), we obtain

GR (q̃) = 1− exp
(∫ q̃

q

bq (x)
v (x)− b (x)dx

) [
1−GR (q)

]
.

We now construct GR and we show that GR �FOSD GK ; in particular, GR puts more
weight on larger quantities than GK does. To start, let GR(0) = GK(0). We say that an
open interval (q̃`, q̃r) is maximal with respect to a property if the property is satisfied on
this interval but not on any other open interval containing (q̃`, q̃r). At the left endpoint
of any maximal interval (q̃`, q̃r) on which b is strictly decreasing, we define GR so that
GR(q̃`) = GK(q̃`), and we define GR on the interior of (q̃`, q̃r) so that b satisfies the first-order
ODE given the initial condition GR(q̃`). In particular, the first-order ODE determines the
value at the right endpoint of the strictly decreasing b interval, GR(q̃r). For any maximal open
interval (q`, qr) on which b is constant, let the value at the right endpoint beGR(qr) = GK(qr).
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(Importantly, GR is well defined at qr = q̃` at which the right endpoint qr of constant-b
interval coincides with the left endpoint q̃` of strictly-decreasing-b interval). Notice that
for any maximal interval (q`, qr) on which b is constant, q` is either 0 or equal to a limit
of a sequence of the right end points of maximal intervals.85 We will see below that the
values of GR on this sequence are monotonic. Since they are also bounded below (they are
nonnegative), the sequence of values of GR at these right endpoints converges, and we define
GR(q`) as its limit, and also set GR(q) = GR(q`) for q in in the interior of any maximal
open interval (q`, qr) on which b is constant. This concludes the construction of GR for all
quantities strictly lower than the maximum possible quantity; at this quantity we set GR to
equal 1. Thus GR is a c.d.f. iff it is monotone.

To establish monotonicity, suppose that q`, qr are such that q` < qr, GR(q`) ≤ GK(q`), and
that b is strictly decreasing on (q`, qr). Then on (q`, qr), the pointwise first-order optimality
conditions obtain, and we have

− (v (q)− b (q))GR
q (q) =

(
1−GR (q)

)
bq (q) , and − (v (q)− b (q))GK

b (q) = 1−GK (q) ;

in particular, GR and GK are continuous on (q`, qr). The left-hand equation holds by con-
struction of GR and the right-hand equation follows from the fact that b is a best response to
supply-reserve distribution K and opponent demand Q. By construction, the −(v(q)− b(q))
terms are equal, and so for any q ∈ (q`, qr) it must be that

GR
q (q)

1−GR (q) = GK
b (q) bq (q)

1−GK (q) . (16)

Suppose that there is q ∈ (q`, qr) such that GR(q) > GK(q). Then there is q̂ ∈ (q`, q)
such that GR(q̂) = GK(q̂), because the c.d.fs GR and GK are continuous on (q`, qr) and
GR(q`) ≤ GK(q`). At this q̂, equation 16 becomes GR

q (q̂) = GK
b (q̂)bq(q̂), and substituting in

for equations 15 gives

GR
q (q̂) = GK

b (q̂) bq (q̂) = GK
q (q̂)− Eξ [Kq (q +Q (b (q) ; ξ))] ≤ GK

q (q̂) .

We conclude that GK(q̂) = GR(q̂) implies GK
q (q̂) > GR

q (q̂), contradicting GR(q) > GK(q).
From this it follows that if b is strictly decreasing on [q`, qr] and GR(q`) ≤ GK(qr), then
GR|q∈[q`,qr] �FOSD GK |q∈[q`,qr], and, in particular, GR(qr) ≤ GK(qr). This inequality allows
us to conclude that if qr is the limit of left endpoints q̃` > qr of maximal intervals, then
GR(qr) is weakly below the limit of G (q̃`) on this sequence. We can conclude that that GR

85The limit might be over right endpoints of both strictly decreasing b and constant b intervals. We allow
for a constant sequence, that is the case where q` is the right end point of an adjacent interval.

49



is monotonic and hence a cumulative distribution function such that GR �FOSD GK .
We now define the random reserve distribution FR as follows: for any q, let FR(b(q)) =

1 − GR(q). We construct a bid function bR that is first-order optimal with respect to FR

and such that bR ≥ b. Our construction is iterative: we begin with bR0 = b, then show how
to compute bR[t+1] from bRt for any t ≥ 0. Let Ωt be the set of maximal constant intervals
of bRt. For an interval (q`, qr) ∈ Ωt, let q̃r solve the ironed first-order optimality condition at
bid level bRt(qr),86

(
FR

(
bRt (qr)

)
− lim

q↘qr
FR

(
bRt (q)

)) (
v (q̃r)− bRt (qr)

)
=
(
bRt (qr)− bRt (q̃r)

)
FR

(
bRt (q̃r)

)
.

Since p = bRt(qr) is a level at which b is constant, there is a mass point in FR at bRt(qr),
and the first-order ironing equation cannot be solved at q̃r < qr. It follows that q̃r ≥ qr, and
moreover that bRt(q̃r) ≤ v(q̃r). Then let Ω̃t be the set of intervals (q`, q̃r), where (q`, qr) ∈ Ωt

and q̃r is derived from qr as above. We now define bR[t+1],

bR[t+1] (q) =

sup
{
bRt (qr) : q ∈ (q`, q̃r) ∈ Ω̃t

}
if ∃ (q`, q̃r) ∈ Ω̃t with q ∈ (q`, q̃r) ,

bRt (q) otherwise.

By construction, bRt ≤ bR[t+1] ≤ v, and thus bRt → bR for some bR.87 Where the limit bR

is strictly decreasing, it is equal to b and therefore satisfies the first-order conditions for
optimality. When the limit bR is constant, it satisfies the ironed first-order conditions for
optimality by construction. It follows that bR is first-order optimal. Finally, since b = bR0

and bRt ≤ bR[t+1] for all t, it must be that b ≤ bR.
Being weakly higher than b, the bid function bR induces a realized quantity distribu-

tion G̃R that is weakly stronger than GR (the distribution of realized quantity with reserve
distribution FR and bid b), which is in turn weakly stronger than GK , and it follows that
π(bR; G̃R) ≥ π(b;GK). Since FR implements bR as a first-order optimal bid function, the
lemma follows.

Remark 1. When supply-reserve distribution K and aggregate supply Q are discontinuous,
we adjust the first condition of the definition of a bidder’s first-order optimality at points
at which GK is not differentiable and require at these points that the left derivative with

86Measure-zero changes in bid do not affect utility or incentives. Therefore in this proof we assume,
without loss of generality, that bRt is left continuous.

87Note that in the simple case where the original bid function b is strictly decreasing, it is the case that
bR = b. The iterative process applied here handles the possible need to extend to the right the constant
intervals from the original bid function b, as well as the possibility that one constant interval “overtakes”
another in the iterative process. Note that in the latter case bR(q) > b(q) for q in the overtaken constant
interval of b.
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respect to b (which always exists, since GK is decreasing in b) satisfies88

− (v (q)− b (q))Gi
b− (q; b)−

(
1−GK (q; b)

)
≥ 0.

This is the only adjustment in the definition; the previous definition is unchanged at points
of differentiability and where bids are flat. We follow the construction of GR in the proof
of Lemma 17 with two adjustments: (i) we substitute the left derivative Gi

b− for derivative
Gi
b, and (ii) the differential part of the construction is separately conducted for maximal

intervals (q`, qr) on which b is strictly decreasing and continuous (as opposed to merely
strictly decreasing). In this way, we are able to construct GR for all relevant quantity and
price pairs, subject to verifying monotonicity as in the above proof of Lemma 17.

Monotonicity continues to hold because GK is monotone and whenever b is strictly de-
creasing and continuous, we have

0 = − (v (q)− b (q))
GR
q (q)

bq+ (q)−
(
1−GR (q)

)
≤ − (v (q)− b (q))GK

b− (q; b,Q)−
(
1−GK (q; b,Q)

)
.

(17)
For any maximal interval (q`, qr) on which b is continuous and strictly decreasing we prove
monotonicity by contradiction, as before. If there is q ∈ (q`, qr) such that GR(q) > GK(q),
there is q̂ ∈ [q`, qr] such that GR(q̂) = GK(q̂): even though GK is potentially discontinuous,
GR is guaranteed to be continuous on the maximal interval in question (it is the solution to
a differential equation) and GK is monotone. At this q̂, plugging equations 15 into inequality
17 gives

GK
b− (q̂) ≤

GR
q (q̂)

bq+ (q̂) .

Since b is decreasing in q, this gives

GR
q (q̂) ≤ GK

b− (q̂) bq+ (q̂)
= GK

q+ (q̂)− Eξ [Kq+ (q +Q (b (q) ; ξ))] ≤ GK
q+ (q̂) .

The final inequality follows from the fact that the exogenous supply-reserve distribution
K satisfies Kq+ ≥ 0. Then dGR(q; b,Q)/dq ≤ dGK(q; b,Q)/dq+ at q = q̂, contradicting
GR(q) > GK(q) for some q > q̂. The remainder of the proof follows the same steps as the
original proof of Lemma 17.

88The left derivative of a function h at x is defined as hx−(x) = limε↘0(h(x)− h(x− ε))/ε. Similarly the
right derivative equals hx+(x) = limε↘0(h(x+ ε)− h(x))/ε.

51



H.3.3 Approximation by Strictly-Decreasing Bid Functions

We now show that we can arbitrarily approximate the first-order optimal bid bR associated
with random reserve FR with a strictly decreasing bid function b̃R, associated with some
random reserve distribution F̃R, and that the distribution of realized quantity under this
approximation approximates the distribution of quantity under bR. Then since bR ≥ b and
b̃R ≈ bR, it follows that either b̃R approximates the revenue generated by b under reserve
distribution FR arbitrarily closely, or yields higher revenue.

Lemma 18. Given a reserve distribution FR with first-order optimal bid bR and any ε > 0,
there is a reserve distribution F̃R with a strictly decreasing first-order optimal bid b̃Rsuch
that π(b̃R; G̃R) > π(bR, GR)− ε.

Proof. If bR is strictly decreasing the claim is trivially satisfied. Therefore, assume that bR is
constant on the (maximal) interval (q`, qr). Let b̃R ≤ bR be strictly decreasing on (q`, qr) and
such that b̃R|q /∈(q`,qr] = bR|q /∈(q`,qr] and b̃R(qr) = limq′↘qr b

R(q′). Let F̃R|p≥bR(q`) = FR|p≥bR(q`).
Then b̃R is first-order optimal for all p ≥ bR(q`) because the definition of first-order optimality
is pointwise.

We now show that b̃R can be specified on (q`, qr] so that (i) the probability that q ∈
(q`, qr] is lower under b̃R than under bR (thus the probability that q > qr is higher under b̃R

than under bR), (ii) b̃R is relatively close to bR, and (iii) the conditional revenue under b̃R,
given q ∈ (q`, qr], is not significantly below the conditional revenue under bR. First, for a
distribution F let ∆F ≡ F (b̃R(q`))−F (b̃R(qr)); since b̃R is first-order optimal and is strictly
decreasing on [q`, qr],

∆F̃R =
[
exp

(∫ b̃R(q`)

b̃R(qr)

1
v (ϕ̃R (y))− ydy

)
− 1

]
F̃R

(
b̃R (qr)

)
<
[
exp

(
ln
[
v (qr)− b̃R (qr)

]
− ln

[
v (qr)− b̃R (q`)

])
− 1

]
F̃R

(
b̃R (qr)

)
=
(
b̃R (q`)− b̃R (qr)
v (qr)− b̃R (q`)

)
F̃R

(
b̃R (qr)

)
=
 F̃R

(
b̃R (qr)

)
FR

(
b̃R (qr)

)
∆FR. (18)

The first inequality follows from the fact that v and ϕ̃R are strictly decreasing, and the final
equality follows from the fact that bR is first-order optimal with respect to FR and is flat
on [q`, qr]. Now suppose that F̃R(b̃R(qr)) < FR(b̃R(qr)); by inequality (18) it must be that
∆F̃R < ∆FR, and since F̃R(b̃R(q`)) = FR(b̃R(q`)) it follows that F̃R(b̃R(qr)) > FR(b̃R(qr)),
a contradiction. Then F̃R(b̃R(qr)) ≥ FR(b̃R(qr)), implying directly that ∆F̃R ≤ ∆FR. Thus
point (i) holds for any b̃R.

Points (ii) and (iii) are shown by construction. For δ > 0 sufficiently small, let b̃R(qr−δ) >
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b̃R(q`)− δ. Since F̃R|p>b̃R(q`) = FR|p>b̃R(q`), the expected revenue generated by bid b̃R under
distribution F̃R, conditional on p > b̃R(q`), is identical to the expected revenue generates by
bid bR under distribution FR, conditional on p > b̃R(q`). Letting b̃R|p<b̃R(qr) = bR|p<b̃R(qr),
we have ||b̃R − bR|| < (qr − q`)δ + (b̃R(q`) − b̃R(qr))δ by construction. By point (i) and
the analysis in the proof of Lemma 17, F̃R|p<b̃R(qr) �FOSD FR|p<b̃R(qr), and so the expected
revenue generated by bid b̃R under distribution F̃R, conditional on p < b̃R(qr), is O(δ)
lower than the expected revenue generated by bid bR under distribution FR, conditional on
p < b̃R(qr). Finally, the utility lost when p ∈ [b̃R(qr), b̃R(q`)] may be bounded in the following
way. When p ∈ [b̃R(qr), b̃R(qr)− δ] at most quantity δ is lost (versus bid bR), with marginal
utility at most v; this loss is incurred with at most probability 1, so this loss is bounded
above by vδ. When p ∈ [b̃R(q`) − δ, b̃R(q`)], the quantity lost (versus bid bR) is at most
(qr − q`) < Q, with marginal utility at most v. However, the probability that this quantity
is lost is bounded by

F̃R
(
b̃R (q`)

)
− F̃R

(
b̃R (q`)− δ

)
=
[
exp

(∫ b̃R(q`)

b̃R(q`)−δ

1
v (ϕ̃R (y))− ydy

)
− 1

]
F̃R

(
b̃R (q`)− δ

)
≤
[
exp

(∫ b̃R(q`)

b̃R(q`)−δ

1
v (qr)− y

dy

)
− 1

]
F̃R

(
b̃R (q`)

)
=
[
exp

(
ln
[
v (qr)−

(
b̃R (q`)− δ

)]
− ln

[
v (qr)− b̃R (q`)

])
− 1

]
F̃R

(
b̃R (q`)

)
=
(

δ

v (qr)− b̃R (q`)

)
F̃R

(
b̃R (q`)

)
.

This probability is thus bounded above by a term linear in δ; indeed v(·) > b(·) for all units
which are received with strictly positive probability (Lemma 8) and hence v(qr)− b̃R(q`) =
v(qr)− bR(qr) > 0. Then for any ε > 0 there is δ > 0 such that the revenue generated by the
first-order optimal bid function b̃R under reserve distribution F̃R is no more than λ below
the revenue generated by the first-order optimal bid function bR under reserve distribution
FR.

The above two lemmas imply the following approximation result:

Lemma 19. Given any best response bid curve b(·) and any ε > 0, there is a massless
reserve distribution F̃R with strictly decreasing first-order best response b̃R such that such
that the first order best response to FR generates no more than λ less revenue than b(·).
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H.3.4 An Auxiliary Uniform-Price Auction with Known Values

We maintain the auxiliary assumption that the bidder whose response we analyze has no
private information. Having shown that we can restrict attention to random reserve, we con-
tinue the analysis by showing that any strictly decreasing first-order optimal bid b̃Rgenerates
strictly less revenue than some uniform-price auction (Theorem 20), which we then bound
by pay-as-bid revenue in the next and final subsection, where we also drop the no-private-
information assumption.

Lemma 20. Given a massless distribution of reserve prices FR and a strictly decreasing
first-order optimal bid bR, there is a distribution of reserve prices F̂R such that the uniform-
price auction under reserve distribution F̂R generates the same expected revenue as the pay-
as-bid auction with first-order optimal bid bR and reserve distribution FR.

Proof. We may assume that the support of the distribution FR is contained in the support
of marginal values on units the bidder can win. Indeed, our assumptions on the utility imply
that this support is convex and thus reserves outside of support are either above or below it.
Probability mass of reserve prices above the support can be arbitrarily shifted to reserves in
the support, increasing expected revenue, and similarly for probability mass of reserve prices
below the support of marginal values; the latter operation might create an atom at the
bottom of the support, but as we have seen in the proofs for Section 3 (cf. Appendix E.4),
this atom does not affect the bidder’s best response behavior. Under these assumptions,
truthful reporting, b ≡ v, is the essentially unique equilibrium in a uniform-price auction
with random reserve drawn from FR. Under a random reserve distribution, each bidder’s
problem is a single-person decision problem. Because demand at a particular price does not
affect outcomes at other prices, at each price bidders should demand a utility-maximizing
quantity. As b is strictly decreasing and first-order optimal, ϕ and ϕp are well-defined and
v(ϕ̂R(p)) = p at all relevant prices p.

Revenue in the pay-as-bid auction under reserve distribution FR is

E [π] =
∫ b

b

(
pϕR (p) +

∫ b

p
ϕR (x) dx

)
fR (p) dp.

Define F̂R so that
F̂R

(
v
(
ϕR (p)

))
= FR (p; s) .

By construction, F̂R
p (v(ϕR(p)))vq(ϕR(p))ϕRp (p) = FR

p (p). Additionally, Supp F̂R = [p, v],
and in a uniform-price auction with reserve distribution F̂R, it is weakly optimal for the
bidder to submit truthful bids for all quantities q such that v(q) ∈ [b, v]. The revenue in this
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auction is
E [π̂] =

∫ v

b
pv−1 (p) F̂R

p (p) dp.

Apply a change of variables, so that p = v̂(ϕR(p′)). Then dp = vq(ϕR(p′))ϕRp (p′)dp′. Since
ϕR(p) = 0, this gives

E [π̂] =
∫ b

b
v
(
ϕR (p′)

)
v−1

(
v
(
ϕR (p′)

))
F̂R
p

(
v
(
ϕR (p′)

))
vq
(
ϕR (p′)

)
ϕRp (p′) dp′

=
∫ b

b
v
(
ϕR (p′)

)
ϕR (p′)FR

p (p′) dp′.

Then compare,

E [π]− E [π̂] =
∫ b

b

(
pϕR (p) +

∫ b

p
ϕR (x) dx

)
FR
p (p)− v

(
ϕR (p)

)
ϕR (p)FR (p) dp

=
∫ b

b

(
−
(
v
(
ϕR (p)

)
− p

)
ϕR (p) +

∫ b

p
ϕR (x) dx

)
FR
p (p) dp

=
∫ b

b

(
−
[
FR (p)
FR
p (p)

]
ϕR (p) +

∫ b

p
ϕR (x) dx

)
FR
p (p) dp

= −
∫ b

b
ϕR (p)FR (p) dp+

∫ b

b

∫ b

p
ϕR (x) dxFR

p (p) dp

= −
∫ b

b
ϕR (p)FR (p) dp+

[∫ b

p
ϕR (x) dxFR (p)

]∣∣∣∣∣
b

p=b
+
∫ b

b
qR (p)FR (p) dp = 0.

The transition from the second line to the third comes from the bidder’s first-order condition
under random reserve. Then the uniform-price auction with reserve distribution F̂R gener-
ates the same revenue as the pay-as-bid auction with reserve distribution FR and first-order
optimal bid bR.

H.3.5 Revenue Dominance of Deterministic Mechanisms with Known Values

Our previous lemmas imply that, when a bidder has no private information, the seller can
weakly improve the revenue obtained from this bidder by implementing a uniform-price
auction with a random reserve price. These results are independent of opponent strategies
in the pay-as-bid auction. Furthermore, we argued above that when the bidder participates in
an auction with a random reserve price (and sufficiently large fixed supply) her best response
is independent of her opponents’ strategies. Thus, if the seller knew each bidder’s private
information, they could improve revenue by implementing a bidder-specific uniform-price
auction with a random reserve price.
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We are now ready to conclude the proof of Lemma 2 by showing that the above uniform-
price auction generates less revenue than a deterministic pay-as-bid auction, still in the
auxiliary environment in which bidders have no asymmetric information (equivalently, when
their information is known to the seller).

Proof. Focusing on one bidder and putting together Lemmas 17, 18, and 20 we can conclude
that for any λ > 0 and any random elastic supply in a pay-as-bid auction, there is a uniform-
price auction with random reserve that raises from the bidder we focus on at least the pay-
as-bid auction revenue minus λ. As we have seen in the first paragraph of the proof of
Lemma 20, in this uniform-price auction we may assume that the bidder bids their true
marginal value curve (at all prices in the support of the random reserve distribution), and
ex post revenue is always weakly below monopoly revenue. It follows that the uniform-
price auction’s revenue is maximized by selling the deterministic monopoly quantity with an
appropriate reserve price. By Theorem 5, this revenue is equivalent to what the seller would
obtain by implementing a pay-as-bid auction for the (deterministic) monopoly quantity, with
or without a reserve price. Thus, to maximize the revenue obtained from a single bidder
whose information is known to the seller, it is optimal to deterministically sell the bidder
the monopoly quantity.

Because bidders are symmetric, it follows that it is optimal to deterministically sell them
the aggregate monopoly quantity (note that the equilibrium price will be the monopoly price
as long as the seller sets the reserves weakly below it).

H.4 Proof of Theorem 10 (Optimality of Deterministic Mecha-
nisms)

Proof. If the seller knows the bidders’ common signal s, the optimal (inelastic) quantity
in a pay-as-bid auction is Q?(s) ∈ arg maxQ≤Qmax Qv(Q/n; s), and, by Theorem 9, in the
essentially unique equilibrium of this pay-as-bid auction, p?(Q?(s); s) = v(Q?(s)/n; s). Let
S : R+ → R+ be a supply curve given by S(p) = inf{Q?(s) : p?(Q?(s); s) > p}. S is right
continuous by construction and is increasing because bidders’ values are regular; hence S is a
valid supply curve. Then, by Theorem 9, the essentially unique equilibrium in the pay-as-bid
auction with supply curve S is such that for any bidder signal s, p(Q?(s); s) = v(Q?(s)/n; s),
and revenue is maximized for each type independently.
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H.5 Proof of Theorem 11 (Revenue Dominance of Pay as Bid)

Proof. Consider the (deterministic) optimal supply curve derived in Theorem 10. Given
this supply curve, there is an equilibrium of the uniform-price auction in which bidders
submit truthful bids; furthermore, because supply is deterministic the clearing price must
be weakly below each bidder’s marginal value for their marginal unit, hence truthful bids
provide an upper bound on uniform-price revenue. As in the pay-as-bid auction, regularity
allows us to compare auction revenues for an observable realization of the bidder-common
signal s. The clearing price and quantity correspond then to the monopoly solution, and
maximal revenue in this equilibrium of the uniform-price auction is equivalent to revenue in
the unique equilibrium of the optimal pay-as-bid auction. No higher revenue is feasible in
the uniform-price auction—even with different distribution over supply-reserve—because for
known s the revenue is bounded above by monopoly revenue.
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