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Abstract

Multi-unit auctions frequently take place in environments with limited information,

such as in new markets and under volatile macroeconomic conditions. We character-

ize optimal prior-free bids in such auctions; these bids minimize the maximal loss in

expected utility resulting from uncertainty surrounding opponent behavior. We show

that optimal bids are readily computable in this environment despite bidders having

multi-dimensional private information. In the pay-as-bid auction the prior-free bid is

unique; in the uniform-price auction the prior-free bid is unique if the bidder is allowed

to determine the quantities for which they bid, as in many practical applications. We

compare prior-free bids and auction outcomes across auction formats; while outcome

comparisons are ambiguous, pay-as-bid auctions tend to generate greater revenue and

welfare than uniform-price auctions when bidders’ values are dispersed. We also com-

pare outcomes in limited-information environments to outcomes in high-information

environments, modeled as bidders playing Bayes-Nash equilibrium, and show that

Bayes-Nash outcomes dominate prior-free outcomes when the auction is competitive.
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1 Introduction

Pay-as-bid and uniform-price are multi-unit auction formats that play a critical role in the

allocation of homogeneous goods. They are used to allocate generation capacity across power

plants in electricity markets and to determine the interest rates at which governments can

issue new debt.1 In these auctions bidders submit demand curves to the auctioneer. The auc-

tioneer uses the submitted demand curves to compute market-clearing prices and quantities,

and each bidder is allocated their demand at the market-clearing price. In the pay-as-bid

auction each bidder pays their bid for each unit received, while in the uniform-price auction

they pay the constant market-clearing price for each unit received. The different pricing rules

induce different strategic incentives and hence different outcomes. These differences are of

interest to regulators: for example, in Summer 2022 prices for natural gas and electricity

were high in Europe due to Russia’s invasion of Ukraine. The high prices sparked a debate

about whether electricity prices would be lower had the pay-as-bid auction been used instead

of the uniform-price auction [Heller and Wieshammer, 2023].

Existing theoretical studies of these auctions typically analyze Bayes-Nash equilibria

(BNE) and often restrict attention to relatively homogeneous bidders. A common justifi-

cation for Nash equilibrium play is that players learn to mutually best respond over time.

Indeed, Doraszelski et al. [2018] show that following a deregulation of the British electric-

ity market, bidding behavior can be explained by Bayes-Nash equilibrium after three to

four years. However, some multi-unit auctions happen rarely, close to a deregulation, or

after substantial shocks that create structural and strategic uncertainty. For these auctions,

Bayes-Nash equilibrium analysis is not applicable.2 Moreover, when many goods are being

auctioned, Bayesian models have previously been tractable only if the bidders were assumed

to be homogeneous, while real-world bidders are often heterogeneous; little is known about

equilibrium behavior in these auctions when bidders have general, multi-dimensional private

values.3

1For government securities, see Brenner et al. [2009] and OECD [2021]. For electricity generation, see
Maurer and Barroso [2011] and Del Ŕıo [2017].

2A short-run justification for equilibrium play is introspection: players reason to equilibrium strategies
[Crawford, 2016]. In multi-unit auctions (as in any Bayesian game), this requires a common prior and
commonly known equilibrium strategies [Aumann and Brandenburger, 1995]. However, even if bidders
have a common prior, the computation of equilibrium strategies is typically intractable due to the multi-
dimensionality of bidders’ information [Swinkels, 2001; Hortaçsu and Kastl, 2012].

3Bayesian equilibrium constructions in these auctions do exist in parameterized contexts. For example,
Engelbrecht-Wiggans and Kahn [2002] describe equilibrium when demand barely exceeds supply; Back and
Zender [1993] and Wang and Zender [2002] when the good is divisible and bidders have common values;
Ausubel et al. [2014] when bidders demand two units; Burkett and Woodward [2020a] when bidders’ values
are defined by order statistics; and Pycia and Woodward [2025] when bidders have common, decreasing
marginal values.
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In this paper we study initial play of arbitrarily heterogeneous bidders in multi-unit

auctions.4 In particular, we study the opposite extreme of Bayes-Nash equilibrium in terms

of the bidders’ information: While bidders in a BNE have common knowledge of the exact

opponent bid distribution, our bidders know only that bids must be consistent with the

rules of the auction; they bid under maximal uncertainty. We study bidders that deal with

this uncertainty (ambiguity) by minimizing the maximal loss in expected utility due to not

knowing the opponent bid distribution [Savage, 1951] and refer to their optimal bids as the

minimax-loss bids.

A first takeaway is that our model is tractable for many questions that can be asked in

multi-unit auction environments. For example, market outcomes can be computed where

Bayes-Nash equilibrium methods are intractable (cf. footnote 2). In contrast with BNE,

we characterize minimax-loss bids for any profile of weakly decreasing multi-dimensional

bidder valuations.5 As the optimal bid functions depend non-linearly on all marginal values,

closed-form solutions are available only when the number of parameters is relatively low

(such as in the case of two-unit demand or under flat marginal values); however, optimal

bids can always be computed straightforwardly with numerical methods. Coming back to the

motivating example of whether electricity prices would have been lower with an alternative

pricing rule, one could specify the (distribution of) marginal costs of electricity providers and

use our bid function characterizations to numerically investigate the impact of the market

design on electricity prices. In terms of bidding language, our prior-free non-equilibrium

approach is tractable with discrete and continuous bids and also in the empirically relevant

setting where bidders are constrained to place fewer bids than the number of units they

demand.6

A second finding is that minimax-loss bids under maximal uncertainty explain existing

experimental bidding data qualitatively better than Bayes-Nash equilibrium. In experimen-

tal auctions with two-unit supply, two bidders, and flat marginal values, Engelmann and

Grimm [2009] find that subjects do not play BNE strategies: They do not bid zero on the

4Level-k reasoning provides an alternative non-equilibrium approach that has been applied to initial play
in multi-unit auctions [Hortaçsu et al., 2019]. However, Rasooly [2023] does not find support for the level-k
model in an experiment designed to disentangle level-k from equilibrium behavior in single-unit auctions.

5In Appendix B we consider the possibility of complementarities in bidders’ preferences, represented by
increasing marginal values.

6In the constrained setting, the implied bid function is a step function, and the location and height of
the steps are the bidders’ choice variables. Although step functions are mathematically simple, they can be
economically complex: when bids are constant over wide intervals, bidders are almost always rationed. When
rationing occurs with positive probability, Bayesian equilibrium bids must take bidding incentives for non-
local units into account, and the equilibrium first-order conditions imply a complicated non-local differential
system [Kastl, 2012; Woodward, 2016]. Our prior-free approach is computationally more tractable, and we
provide analytic solutions in the case of constant marginal values.
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second unit in the uniform-price auction and they do not submit flat bids in the pay-as-bid

auction. Such behavior can be qualitatively explained by minimax-loss bids under maximal

uncertainty: the second minimax-loss bid is positive in the uniform-price auction and the

second bid is lower than the first in the pay-as-bid auction.

Third, minimax-loss and Bayes-Nash equilibrium bids cannot be compared unambigu-

ously. When there are two bidders and two units for sale in a uniform-price auction, the

second bid is often zero in the Bayes-Nash equilibrium [Ausubel et al., 2014; Engelbrecht-

Wiggans and Kahn, 1998; Noussair, 1995], but it is strictly positive under maximal uncer-

tainty. In the pay-as-bid auction with single-dimensional private information and a uniform

prior, the bids cannot be ranked unambiguously across informational regimes. However,

when there are many goods and homogeneous bidders with sufficiently flat marginal val-

ues (as in Ausubel et al. [2014]), we show that, for relatively small quantities, Bayes-Nash

equilibrium bids are higher than minimax-loss bids regardless of the auction format. The

intuition is that common knowledge of homogeneity creates competitive pressure that leads

to higher bids; under maximal uncertainty, bidders do not know that all are alike and that

they will therefore bid similarly, which does not push bids up. On the other hand, for large

quantities BNE bids in the pay-as-bid auction can be so high that they are above value [Pycia

and Woodward, 2025]; that is, the equilibrium can be in dominated strategies. Minimax-loss

bids are always undominated.

Regarding design implications, ex post payments are not generally comparable across

auction formats.7 For small quantities, the high bids of the uniform-price auction yield

higher revenue than the low bids of the pay-as-bid auction, but for large quantities the low

bids of the uniform-price auction yield lower revenue than the aggregate payment of both

high and low bids in the pay-as-bid auction.8 We also discuss how to set supply to maximize

revenue (Propositions 5, 6, and 7).

Over time, auctioneers may be able to steer behavior toward the informational extremes of

maximal uncertainty or Bayes-Nash equilibrium by revealing no or a lot of information about

past bids (respectively). We find that the auctioneer does not unambiguously prefer one

informational extreme over the other. When bidders are homogeneous, common knowledge

of this homogeneity creates a highly competitive auction and revenue is higher in Bayes-Nash

equilibrium than under maximal uncertainty, where bidders cannot rule out asymmetry.

However, in settings where (tacitly) collusive, low-revenue Bayes-Nash equilibria exist—such

as in a uniform-price auction with two bidders and two goods—revenue is higher under

7In an equilibrium framework with ambiguity and unit-demand bidders, Bougt et al. [2024] show that
the pay-as-bid auction raises the highest revenue.

8Payment ambiguity has been observed in Bayes-Nash equilibrium [Ausubel et al., 2014] and empirically
[Barbosa et al., 2022]
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maximal uncertainty. In this case, bidders are unaware of the collusive scheme in which one

bidder effectively offers a single good for free while pricing the second good prohibitively

high. The extent to which this generalizes and whether intermediate informational policies

can be optimal are beyond the scope of the paper.

Regarding empirical implications, our characterizations also lead to novel testable empir-

ical predictions. For example, in the constrained setting and with constant marginal values,

minimax-loss bid quantities are evenly spaced in the pay-as-bid auction, but concentrated

on intermediate quantities in the uniform-price auction. In general, if one knew the bidders’

values, then one could test whether they use the minimax-loss bids. Usually, however, one

does not observe the bidders’ values. In this case, the optimal bidding strategies can be

used to estimate the bidders’ values. Our uniqueness results and the characterizations of the

optimal bids lead to point-identification of the values and a simple estimation procedure.

We introduce the model in the next section. Section 3 illustrates our approach and some

findings with an analysis of the two-unit case. Section 4 contains some key theoretical results

for the analysis of minimax loss in pay-as-bid and uniform-price auctions, which are applied

in Sections 5 and 6 to analyze the unconstrained and bidpoint-constrained cases, respectively.

Section 7 concludes. Omitted proofs are in Appendix A. Appendix B analyzes increasing

marginal values. Appendices C and D contain a detailed analysis of the constrained case

and the two-unit last accepted bid uniform-price auction, respectively.

2 Model

We consider an auction for quantity Q > 0 of a perfectly divisible, homogeneous good. There

are n ≥ 2 bidders participating in the auction. Buyer i, i ∈ {1, . . . , n}, has marginal value

function vi : [0, Q] → R+; that is, vi(q) is their marginal value for quantity q. We assume

that marginal values are weakly decreasing, so that vi(q) ≥ vi(q′) whenever q ≤ q′, and

assume as well that vi is Lipschitz continuous.9 For notational simplicity we assume that

bidders have a strictly positive value for each unit, hence vi(Q) > 0.10 The marginal value

functions (vi)ni=1 may be distributed according to some joint distribution.

Bidder i submits a weakly decreasing and right-continuous bid function bi : [0, Q] → R+.

9We analyze increasing marginal values in Appendix B.
10Our results remain valid when bidders do not strictly demand all units, provided we replace ag-

gregate supply Q with the supremum of all quantities for which marginal value is strictly positive,
Qi = sup{q : vi(q) > 0}. Additionally, if Qi < Q, all results obtain in the limit with values vi(q) + ε,
letting ε ↘ 0.
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After observing the bid profile (bj)nj=1 the auctioneer computes a market-clearing price p⋆,

p⋆ ∈
{
pLAB, pFRB

}
;

pLAB = sup

{
p :

n∑
i=1

qi ≥ Q where qi = sup{q′ : bi(q′) ≥ p}

}
,

pFRB = inf

{
p :

n∑
i=1

qi ≤ Q where qi = sup{q′ : bi(q′) ≥ p}

}
.

There is strict excess supply for prices above pLAB and strict excess demand for prices below

pFRB. Hence, the prices pLAB and pFRB are related to the last bid accepted and the first bid

rejected, respectively.11 All bids strictly above the market-clearing price p⋆ are awarded, and

all bids strictly below the market-clearing price are rejected. When there are multiple bids

placed at the market-clearing price, ties are broken randomly.12

Bidders are risk neutral. If a bidder with value vi receives quantity qi and makes transfer

ti, their utility is

û
(
qi, ti; v

i
)
=

∫ qi

0

vi (x) dx− ti.

We consider two common auction formats. In a pay-as-bid (or discriminatory) auction

(PAB), transfers are equal to the sum of bids for received units, tPAB
i =

∫ qi
0
bi(x)dx. In

a uniform-price auction (UPA), transfers are equal to the market-clearing price times the

number of units received, tUPA
i = p⋆qi. We analyze uniform-price auctions with pFRB or pLAB

as the market-clearing price. The exact market-clearing price matters only when selling dis-

crete units (as in Section 3). If opponent bids b−i are distributed according to the integrable

distribution B−i, we write bidder i’s interim utility as u(bi, B−i; vi) = EB−i [û(qi(b), ti(b); vi)],

where qi and ti are functions that map, according to the auction rules, the bidders’ bid

functions b = (bi, b−i) to bidder i’s quantity qi and transfer ti, respectively.
13

11See Burkett and Woodward [2020a]. Treasury auctions frequently apply last-accepted-bid pricing (e.g.,
the United States and Switzerland) while theoretical analyses frequently study first-rejected-bid pricing
[Ausubel et al., 2014].

12As long as all bids strictly above the market-clearing price are awarded, the precise tiebreaking rule does
not affect our results.

13Integrability of B−i is not a constraint on our results, since in all auction formats û is bounded below
by 0 and above by Qvi(0).
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2.1 Loss and regret

Given a distribution of opponent bids B−i, bidder i’s loss from bidding bi instead of the

interim-optimal bid is

L
(
bi;B−i, vi

)
= sup

b̃

EB−i

[
û
(
qi(b̃, b−i), ti

(
b̃, b−i

)
; vi

)
− û

(
qi
(
bi, b−i

)
, ti

(
bi, b−i

)
; vi

)]
.

Loss measures the difference between expected utility given bid bi and the utility obtainable

by optimizing the submitted bid with respect to distribution B−i. For example, when bid

bi is a best response to distribution B−i, loss is zero. Loss is evaluated from an interim

perspective; the equivalent ex post concept is regret,

R
(
bi; b−i, vi

)
= sup

b̃

û
(
qi
(
b̃, b−i

)
, ti

(
b̃, b−i

)
; vi

)
− û

(
qi
(
bi, b−i

)
, ti

(
bi, b−i

)
; vi

)
.

Regret measures how much additional utility the bidder could receive if they had known

the bids their opponents submitted prior to choosing their own bid.14 A utility-maximizing

bidder with perfect foreknowledge of their opponents’ bids will have zero regret.

If bidder i knew the true distribution of opponent bids B−i, she would evaluate potential

bids by standard expected utility. However, in our model bidders face ambiguity regarding

the true distribution B−i and know only that B−i ∈ B, where B is a set of feasible distribu-

tions over opponent bids. In the presence of this ambiguity, bidder i evaluates potential bids

according to the maximum loss generated by any feasible distribution of opponent bids; the

optimal bid b⋆ minimizes this loss:

b⋆ ∈ argmin
bi

sup
B−i∈B

L
(
bi;B−i, vi

)
.15

Hence, our bidders adopt the same interim perspective as Bayesian players that best respond

to (their belief of) the opponent bid distribution.16

We refer to b⋆ as bidder i’s minimax-loss or optimal bid. We focus on the case of

maximal uncertainty, in which B contains all joint distributions on feasible bid functions;

i.e., all distributions over n−1 weakly-decreasing functions mapping [0, Q] to R+. Note that

B is rich enough to include uncertainty about the number of bidders and supply.17

14We follow Schlag and Zapechelnyuk [2021] and Kasberger and Schlag [2024] and refer to the interim
concept as loss and to the ex post equivalent as regret.

15We show that a bid that minimizes worst-case loss always exists.
16The ex post perspective is frequently applied to the analysis of environments with ambiguity [Stoye,

2011, Bergemann and Schlag, 2011]. Our interim perspective is consistent with standard Bayesian analysis.
17There are bid distributions in B that put all the mass on bidder j bidding zero, i.e., bj(q) = 0 for all q.

This effectively reduces the number of bidders so that n is merely an upper bound on the number of bidders.
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Savage [1951] introduced the minimax loss (regret) decision criterion for statistical deci-

sion problems. Since then it has been applied in econometrics [Manski, 2021], mechanism

design [Bergemann and Schlag, 2008, 2011; Guo and Shmaya, 2023, 2025], operations re-

search [Perakis and Roels, 2008; Besbes and Zeevi, 2011], and more generally in strategic

settings. Our paper belongs to the latter category. A first paper on analyzing games with

minimax regret as the players’ decision criterion was Linhart and Radner [1989] who study

the minimization of worst-case regret in bargaining. Parakhonyak and Sobolev [2015] con-

sider Bayesian firms best responding to consumers whose search rules for the lowest price are

derived from worst-case regret minimization. Renou and Schlag [2010], Halpern and Pass

[2012], Kasberger [2022], and Schlag and Zapechelnyuk [2023] propose solution concepts for

loss (regret) minimizing players.

We offer a descriptive and a prescriptive interpretation of minimax-loss bids. From a

prescriptive perspective, a practical advantage of our non-Bayesian approach is that the

bids are completely prior-free, i.e., they do not depend on the other bidders’ value distri-

butions and strategies. All a bidder needs to know is their own willingness-to-pay. The

bids are robust because the bidder need not worry about misspecified beliefs. Indeed, if any

bid distribution is deemed possible, then in particular the actual distribution is possible.

Kasberger and Schlag [2024] illustrate empirically that loss-minimizing bids perform well in

first-price auctions, despite bidders having very coarse beliefs about competitors’ behavior.

Even the bid under maximal uncertainty performs better than observed bids in experimental

and field data. On the other hand, group decision-making provides a descriptive motivation

for minimax loss. Suppose a corporation tasks a team with finding the right bid. Based on

information learned after the auction, the executive board or a rival colleague might crit-

icize the bidding team for having missed an opportunity, and the bidding team may want

to preemptively defend against such a critique. By selecting a minimax-loss bid the bidding

team can claim, “Your alternative bid would have been worse than our bid had there been

this other bid distribution. This bid distribution was a real possibility.” The minimax bid is

then robust to complaints that appeal to the materialized bid distribution.18 Minimax bids

are a way to justify the choice as an (undisputed) counterfactual case can be presented so

that the minimax bid was the compromise between the two cases.19

Our model can also be understood as featuring (residual) supply uncertainty: let Q be the upper bound
of the support of supply and reduce supply through other bidders that demand units at prohibitively high
prices, above vi(0).

18Savage [1951] also suggests group decision-making as a justification for the minimax principle. In his
story group members have different subjective probability assessments and the minimax principle seeks to
keep the greatest “violence” done to anyone’s opinion to a minimum. In contrast, we interpret the minimax
as a way to defend against ex post complaints.

19The worst-case utility is always zero if the bidder seeks to maximize the payoff guarantee. Any bid

8



3 Two-unit demand

Before our general analysis, we illustrate our analytical approach in the case in which bidders

demand up to two units.20 As in the model of Ausubel et al. [2014], bidder i has value vi1 for

their first unit and value vi2 = ρvi1 for their second unit, and submits two bids (bi1, bi2). We

assume marginal values are decreasing and non-negative, i.e., vi1 ≥ vi2 ≥ 0.21 Lemma 1 in

Section 4 reduces the interim loss-minimization problem to an ex post regret-minimization

problem; therefore, it suffices to study opponent bids instead of richer bid distributions.

There are three relevant outcomes in an auction in which a bidder demands up to two units:

the bidder may win zero, one, or two units. And, if a bidder wins k ∈ {0, 1, 2} units, the

opponent’s bids can be such that it would have been ex post optimal to win k′ ∈ {0, 1, 2}
units. Thus, for each k we find the opponent bids (and k′) such that bidder i leaves the most

surplus on the table—that is, the opponent bids that maximize bidder i’s regret conditional

on winning k units.

3.1 Pay-as-bid auctions

With decreasing marginal values, it is never profitable to bid above value in a pay-as-bid

auction. Hence, we restrict attention to bi1 ≤ vi1 and bi2 ≤ vi2.

Case 1: zero units. The two highest opponent bids, denoted by c1 and c2 (where c1 ≥ c2),

must be above bidder i’s bids when bidder i does not win anything: c2 ≥ bi1. Let (x)+ =

max{0, x}. The highest possible expected utility given c1 and c2 is

max{(vi1 − c2)+, (vi1 − c1)+ + (vi2 − c1)+};

it can be optimal to win one unit by bidding marginally higher than c2 (the left-hand term),

or it can be optimal to win two units by having both bids marginally higher than c1 (the

right-hand term). However, if c2 ≥ vi1, then it is optimal to not win anything and the highest

function below value is then optimal. A natural selection is to bid value (because it is the only bid function
for which no opponent bid would induce a change in the bid function, namely to overbid the opponent
slightly). Bidding value is neither a good predictor of behavior (cf. the experimental data of Engelmann
and Grimm [2009]), nor a sensible bid recommendation because there is no point in bidding (at least in the
discriminatory auction). Put differently, maxmin expected utility is not robust to complaints about missed
opportunities.

20An earlier working version of this paper contains the analysis of the general discrete multi-unit case
[Kasberger and Woodward, 2023].

21We analyze increasing marginal values in Appendix B.

9



possible expected utility is zero. Maximal regret conditional on winning nothing is therefore

sup
(c1,c2) : c1≥c2>bi1

[max {(vi1 − c2)+, (vi1 − c1)+ + (vi2 − c1)+}]︸ ︷︷ ︸
highest possible surplus given opponent bids

− [0].︸︷︷︸
surplus with original bids

Observe that regret cannot be maximized at c2 ≥ vi1 because this would lead to zero regret,

implying that the original bids were optimal. Then regret is decreasing in at least one of

c1 and c2, and in the worst case (for bidder i) the opponent’s bids are c1 = c2 = bi1 + ε.

Depending on bi1 and vi2, the bidder wants to win one or two units and can win those by

raising the first bid to bi1 + 2ε and (if profitable) the second bid to bi1 + 2ε. Put differently,

bids are most suboptimal if the bidder could have won as many as they wanted at a price

just above their first-unit bid. In the limit (ε → 0), worst-case regret conditional on winning

zero units equals

(vi1 − bi1) + (vi2 − bi1)+ .

Case 2: one unit. The bidder wins one unit if bi1 > c2 and c1 > bi2. Conditional on this

outcome, maximal regret is

sup
(c1,c2) : bi1>c2 and c1>bi2

[max {vi1 − c2, (vi1 − c1)+ + (vi2 − c1)+}]︸ ︷︷ ︸
highest possible surplus given opponent bids

− [vi1 − bi1].︸ ︷︷ ︸
surplus with original bids

The highest possible surplus may be attained by winning one or two units (winning nothing

cannot be optimal since bids are below value). When it is optimal to win a single good,

regret is maximized when this can be done at a lower price. In the worst case, c1 ≥ vi2 and

c2 = 0, and associated regret is b1—i.e., the bidder overpays for the unit they receive. But

note that regret in this case is no higher than in the case in which the bidder receives two

units, and ex post prefers to receive two units.

Then it is sufficient to consider only the possibility that, given c1 and c2, bidder i still

desires to win two units but at a different price. In this case, regret decreases in c1. In the

worst case the opponents’ highest bid is c1 = bi2 + ε. The bidder overpays on the first unit

because a lower first bid would have also been winning, and bids marginally too low on the

second unit. We refer to this case as underbidding because the bidder bids too little on the

second unit. Worst-case regret conditional on winning one unit is

[(vi1 − bi2) + (vi2 − bi2)]− [(vi1 − bi1)] = (bi1 − bi2) + (vi2 − bi2) .

Case 3: two units. The bidder wins two units if bi2 > c1. Conditional on this outcome,

10



maximal regret is

sup
(c1,c2) : bi2>c1

[max {(vi1 − c1) + (vi2 − c1), vi1 − c2}]− [(vi1 − bi1) + (vi2 − bi2)].

Conditional on winning both units, bids can be suboptimal if they are too high; the

bidder overpays on both units if both units could be acquired cheaper (for a per-unit price

of c1 + ε) and overpays on the first unit if one unit can be acquired cheaper (for a per-unit

price of c2 + ε); as when the bidder received one unit, when bids are below values it cannot

be the case that it is ex post optimal to receive zero units. In the worst case, the two highest

opponent bids are (0, 0) so that the bidder can reduce their bids to (ε, ε); in this event

worst-case regret equals

[(vi1 − 0) + (vi2 − 0)]− [(vi1 − bi1) + (vi2 − bi2)] = bi1 + bi2.

Determining optimal bids. The minimax-loss bid balances the regret conditional on the

realization of any of the three outcomes: underbidding regret conditional on receiving any

number of units, and overbidding regret conditional on winning two units. Maximal loss is

max
{
(vi1 − bi1) + (vi2 − bi1)+ , (bi1 − bi2) + (vi2 − bi2) , bi1 + bi2

}
. (1)

The minimax is attained by equalizing the three expressions, and the unique minimax-loss

bid vector in the pay-as-bid auction is

bPAB
i1 =

vi1
9
(3 + 2ρ) if ρ ≥ 3

7
,

vi1
6
(3− ρ) if ρ < 3

7
;

and bPAB
i2 =

ρvi1
3

. (2)

The case distinction is due to the value for the second good being below or above the bid

for the first; i.e., the term (vi2 − bi1)+ in Equation (1).

Figure 1 illustrates the bid function as a function of ρ. If ρ = 0, then the minimax bid is

bPAB
i1 = vi1/2, which is as in the first-price auction for a single good [Kasberger and Schlag,

2024]. The bid bPAB
i1 decreases in ρ for ρ ≤ 3/7.22 This antitonicity arises because increasing

ρ in this range increases the loss conditional on receiving a single unit, hence the bid bi1 falls

so that loss is equalized across outcomes. To provide more discussion of this antitonicity,

suppose ρ is relatively low so that the bidder does not want to buy the second good at price

bi1. The bid bi1 is then found by equalizing the underbidding regret conditional on losing the

22McAdams [2007] provides examples of a uniform-price auction where Bayes-Nash equilibrium bids may
decrease in the bidder’s value due to risk aversion and affiliated values. Our example concerns the pay-as-bid
auction and relies on a distinct rationale.
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Figure 1: First- and second-unit bids in the pay-as-bid and uniform-price auctions, when
the bidder demands two units.

auction with the overbidding regret conditional on winning two units: vi1 − bi1 = bi1 + bi2.

A higher bi2 increases the level of regret, forcing bi1 to be lower. Since bi2 = vi2/3 increases

in ρ, the observed antitonicity follows. Conversely, if ρ is sufficiently high so that the bidder

wants to buy two units at a price of bi1, underbidding regret conditional on losing the

auction is (1 + ρ)vi1 − 2bi1. A marginal increase of ρ now increases regret conditional on

losing the auction stronger than overbidding regret. Hence, to maintain equivalence between

overbidding and underbidding regret, the bid bi1 must increase in ρ. It follows that for values

of ρ above 3/7, both bids increase in ρ, though the second bid bPAB
i2 increases more quickly

than bPAB
i1 . By corollary, the spread between the two bids uniformly decreases in ρ.

3.2 Uniform-price auctions

As in the pay-as-bid auction, three exhaustive outcomes may maximize loss in the uniform-

price auction: the bidder either receives zero, one, or two units. We consider these outcomes

on a case-by-case basis and study the uniform-price auction with the first rejected bid (FRB)

or the last accepted bid (LAB) as the market-clearing price.

3.2.1 First rejected bid uniform-price auction

In the uniform-price auction with the first rejected bid as the market-clearing price, it is

known that bidding truthfully on the first unit is weakly dominant [Engelbrecht-Wiggans and

Kahn, 1998]. However, to motivate a selection of a minimax-loss bid we compute maximal

regret for any undominated bids, bij ≤ vij, j = 1, 2.
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Case 1: zero units. Recall that bidder i wins nothing if the second-highest competing bid

is above bi1: c2 ≥ bi1. The difference from the pay-as-bid auction lies in the payment rule.

If bidder i were to win one unit, then the first rejected bid would be max{c2, bi2}. Hence,

the maximum ex post utility in which bidder i wins one unit is associated with setting the

second bid equal to zero. If bidder i were to win two units, then the first rejected bid would

be c1. Maximal regret conditional on winning zero units is

sup
(c1,c2) : c1≥c2>bi1

[max {(vi1 − c1)+ + (vi2 − c1)+, (vi1 − c2)+}]− [0].

Regret decreases in c1 and c2 and is maximized by c1 = c2 = bi1 + ε. Maximal regret is

therefore

max
{
(vi1 − bi1) + (vi2 − bi1)+ , (vi1 − bi1)+

}
.

This case is associated with “underbidding” because bidder i could win more by raising the

first bid marginally, and the second bid if profitable.

Case 2: one unit. Recall that the bidder wins one unit if bi1 > c2 and c1 > bi2. The first

rejected bid is max{c2, bi2}. Conditional on this outcome, maximal regret is

sup
(c1,c2) : bi1>c2 and c1>bi2

[max {(vi1 − c2)+, (vi1 − c1)+ + (vi2 − c1)+}]− [vi1 −max{c2, bi2}].

Given c1 and c2, it can be optimal to win one or two units, but it cannot be optimal to win

zero because bids are below value. When it is optimal to win one unit, regret equals

sup
(c1,c2):bi1>c2 and c1>bi2

vi1 − c2 − vi1 +max{c2, bi2} = bi2.

Corresponding worst-case opponent bids are c1 = max{vi1, bi1} and c2 = 0. Bidder i’s second

bid bi2 sets the market-clearing price so that bidder i “overbids” because they could have

won the unit for free.

When winning two units is optimal, regret equals

sup
(c1,c2) : bi1>c2 and c1>bi2

vi1 − c1 + vi2 − c1 − [vi1 −max{c2, bi2}].

If c2 > bi2, then regret is vi2 + c2 − 2c1. Since regret increases in c2 and c1 ≥ c2, it follows

that maximal regret in this case is supc1>bi2
vi2 − c1. Worst-case regret is vi2 − bi2; the

corresponding worst-case bids are c1 = c2 = bi2 + ε. If c2 ≤ bi2, then regret is vi2 − 2c1 + bi2.

Regret decreases in c1 so that the worst-case c1 equals bi2 + ε. In any case, if it is optimal to

win two units, the regret is associated with “underbidding;” a marginally higher bi2 would
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have been better. Maximal regret conditional on winning one unit is max {bi2, vi2 − bi2}.
Case 3: two units. Recall that two units are won if bi2 > c1. In this case, the highest

rejected bid is always c1. Hence, the two units cannot be won cheaper. Winning nothing

cannot be better than two units if bids are below value. If it is optimal to win one unit for

a transfer of c2, then regret is

sup
(c1,c2) : bi2>c1

[vi1 − c2]− [vi1 + vi2 − 2c1] = sup
(c1,c2) : bi2>c1

2c1 − c2 − vi2.

In the worst case, c2 = 0 and c1 = bi2 − ε so that maximal regret is 2bi2 − vi2. Bidder i

“overbids” because one unit could have been won for free.

Determining optimal bids. Regret is maximized by one of the previous cases and equal

to

max {(vi1 − bi1) + (vi2 − bi1)+, bi2, vi2 − bi2, 2bi2 − vi2} . (3)

Regret minimization pins down bi2 = vi2/2. However, in contrast with the pay-as-bid auction,

there is no case that involves both bi1 and bi2. Consequently, there is no unique bid that

minimizes the maximal regret.23 A natural minimax-bid is found “pointwise” by selecting

bids that minimize the maximum of the expressions in which they appear. A truthful first

bid bi1 = vi1 is then optimal (as are marginally lower first bids). The minimax-loss bid is

bFRB
i1 = vi1 and bFRB

i2 =
ρvi1
2

. (4)

Below we call this selection the conditional regret minimizing bid.

We view this selection as natural for three reasons. First, it leads to a bidding strategy

that is weakly dominant [Engelbrecht-Wiggans and Kahn, 1998]. Second, the selection is

unique, serving the purpose of pinning down the bidding strategy. Third, it optimizes the

entire bidding function also for “local worst cases”. To elaborate, let bi1 = vi1 − ε and

bi2 = vi2/2. Such a bid also minimizes maximal regret, which is equal to vi2/2. A “global

worst case” for such a bidding function is that bidder i wins one unit and pays bi2, but

could have won the unit for free. However, the bidding function does not adequately protect

against the situation in which bidder i wins zero units but could have won at least one with

a higher bid on the first unit. The conditional regret is relatively minor (e.g., vi1 − bi1 = ε)

compared to the global maximal regret of vi2/2. Nevertheless, it might pay off to minimize

maximal loss also for “local worst cases” instead of only the global ones. Note that such a

23The best-reply correspondence of Bayesian bidders can also be multi-valued. Moreover, multiple equilib-
ria can exist. For example, in the “collusive” equilibrium with two bidders and units, bidder i bids truthfully
on the first unit and zero on the second. An alternative equilibrium is that bidder i bids some high value v
for the first unit and zero for the second unit.
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bid would not necessarily be separable with respect to vi1 and vi2.

3.2.2 Last accepted bid uniform-price auction

There is also not a unique minimax-loss bid in the last accepted bid uniform-price auction.

The conditional regret minimizing bid equals

bLAB
i1 =

1
3
vi1 (1 + ρ) if 1

2
≤ ρ,

1
2
vi1 otherwise;

and bLAB
i2 =

ρvi1
3

. (5)

We provide the details in Appendix D.

3.3 Revenue and welfare comparison

We now use the minimax-loss bid functions to compare auction revenue and welfare across the

three auction formats. Despite the clear ranking of bid levels (cf. Figure 1), auction outcomes

may be ambiguous because different payment rules imply different bid functions which induce

distinct mappings from bidder values to outcomes. Minimax-loss bids are insensitive to the

underlying distribution of bidder values, and this distribution therefore induces a degree of

freedom which may render cross-mechanism outcome comparisons ambiguous. Essentially,

the uniform-price formats generate higher revenue when the distribution of values is narrow

and pay-as-bid generates higher revenue when the distribution of values is wide; this is

because in the pay-as-bid auction the winning bidders’ payments are independent of opponent

competitiveness, while in the FRB uniform-price auction the lack of competition affects the

price paid.

We illustrate these tradeoffs in the two-bidder, two-unit context of this section.

Example 1. Let there be two bidders and two units for sale.24 The marginal values are flat

(i.e., ρ = 1 and vi2 = vi1 ≡ vi). Without loss of generality, assume that bidder 1’s marginal

value is higher than bidder 2’s marginal value, v1 ≥ v2, and let τ ∈ [0, 1] be such that

v2 = τv1.

In the PAB auction, bidder i bids (5
9
vi,

1
3
vi). Bidder 1 wins two units if 1

3
v1 ≥ 5

9
τv1, that

is, if and only if τ ≤ 3
5
. Otherwise, both bidders win one unit each. Ex-post revenue in the

PAB auction is 8
9
v1 if τ ≤ 3

5
and 5

9
v1(1 + τ) if τ > 3

5
.

In the FRB uniform-price auction, bidder i bids (vi,
1
2
vi). Bidder 1 wins two units if

1
2
v1 ≥ τv1, that is, if and only if τ ≤ 1

2
. In this case, the highest rejected bid is τv1.

24The analysis of the PAB and LAB auctions also applies when there are more than two bidders. However,
the first rejected bid might come from the bidder with the third highest bid.
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Note: Two bidders and two discrete units for sale. Marginal values are
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marginal value is v2 = τv1.

Figure 2: Ex-post revenue in Example 1

Otherwise, both bidders win one unit each and the first rejected bid is v1/2. Ex-post revenue

in the FRB uniform-price auction is 2τv1 if τ ≤ 1
2
and v1 if τ > 1

2
.

In the LAB uniform-price auction, bidder i bids (2
3
vi,

1
3
vi). Bidder 1 wins two units if

1
3
v1 ≥ 2

3
τv1, that is, if and only if τ ≤ 1

2
. In this case, the last accepted bid is 1

3
v1. Otherwise,

both bidders win one unit each so that the last accepted bid equals 2
3
τv1. Ex-post revenue

in the LAB uniform-price auction is 2
3
v1 if τ ≤ 1

2
and 4

3
τv1 if τ > 1

2
.

Figure 2 depicts ex-post revenue in the three auction formats as a function of τ . The

first observation is that revenue can be highest in any auction format. The PAB auction

leads to the highest revenue if the second-highest marginal value is relatively low (τ ≤ 4
9
).

Bidder 1 wins both objects and revenue is high due to the relatively high first bid. The FRB

uniform-price auction maximizes revenue among the three auction formats if the second-

highest marginal value takes intermediate values (4
9
≤ τ ≤ 3

4
). Revenue is (close to) v1,

which is higher than (revenue in the neighborhood of) 8v1/9 in the PAB and 2v1/3 in the

LAB uniform-price auction. Finally, the LAB uniform-price auction generates the highest

revenue if both bidders have similar values since the last accepted bid is relatively high in

this case (τ ≥ 3
4
). The expected revenue of the three auctions can also be ranked analogously

according if the bidders’ joint value distribution puts sufficient mass on τ in the respective

intervals. ◀

Any auction can also lead to the highest welfare. In the notation of Example 1, it is

efficient that the bidder with the highest type (v1) wins two units if v1 + ρv1 ≥ v1 + τv1,
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i.e., if and only if ρ ≥ τ . Otherwise, in the efficient allocation the two bidders with the two

highest values each receive one unit. If ρ = 1, it is always efficient that the bidder with the

highest value wins both units. The PAB auction is efficient if and only if τ ≤ 3
5
, while the

uniform-price auctions are efficient if and only if τ ≤ 1
2
. It follows that all three auctions

are efficient if the distribution of τ puts all the mass below 1
2
and equally inefficient if all

mass is above 3
5
. However, if the distribution of τ puts mass on (1

2
, 3
5
], then PAB is more

efficient than the uniform-price auctions. We note that welfare equivalence in the one-unit-

to-each case does not contradict the ambiguous revenue ranking discussed above, as welfare

measurement only considers the extensive margin (whether the “right” agent receives the

good) while revenue measurement also considers the intensive margin (how much they pay).

The following proposition shows that the pay-as-bid auction achieves a weakly higher

welfare than the other auctions.

Proposition 1. Let there be two discrete units for sale and vi2 = ρvi1 for all bidders i,

0 ≤ ρ ≤ 1. Suppose bidders play the minimax-loss bids in Equations (2), (4), and (5).

• All three auction formats are efficient when it is efficient that the two bidders with the

highest values win one unit each.

• When it is efficient that the bidder with the highest value wins both units, the pay-as-bid

auction is weakly more efficient than the last accepted bid uniform-price auction, which

is weakly more efficient than the first rejected bid uniform price auction.

3.4 Comparison to Bayes-Nash equilibrium and design implica-

tions

We now compare minimax-loss and Bayes-Nash equilibrium bids and outcomes. We first

argue that minimax-loss and BNE bids cannot be generally compared; whether one bid

curve or the other is more aggressive depends on the steepness of true demand and on

the level of competition in the auction. An immediate corollary is that auction outcomes

cannot be compared unambiguously. We therefore cannot say conclusively that an auctioneer

should encourage minimax-loss bidding or BNE bidding, to the extent such encouragement

is possible. Nonetheless, in spite of this lack of comparability we show that minimax-loss

bids are qualitatively consistent with experimental work, hence auctioneers may have reason

to seriously consider the implications of minimax-loss bidding.

The comparison of minimax-loss and BNE bid curves depends on the strength of com-

petition and on the strength of demand. Intuitively, when there is little competition in
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the auction, Bayes-Nash equilibrium bids tend to be lower than bids under maximal un-

certainty because only Bayesian bidders adjust their bids to the absence of competition.

Maximally uncertain bidders are unaware that competition is thin and, accordingly, tend

to bid higher than in BNE. If there is strong competition in the sense of there being many

bidders, minimax-loss bids will tend to be lower than Bayes-Nash equilibrium bids because

the bid function is independent of the number of bidders while BNE bids tend to value as

the number of bidders becomes large [Swinkels, 2001].

To demonstrate the role of demand strength, in what follows we hold the number of

bidders equal to two. Even under this minimal level of competition minimax-loss and BNE

bids differ qualitatively and cannot be ranked unambiguously. We show this for pay-as-bid

auctions under the assumption that values are distributed uniformly. For the case of flat

marginal values (ρ = 1), Ausubel et al. [2014] show that Bayes-Nash equilibrium bids are

flat; that is, each bidder submits two identical bids. This stands in contrast to bidding under

maximal uncertainty, where the second bid is strictly lower than the first (Equation (2)).

With decreasing marginal values (0 ≤ ρ < 1), the BNE in the PAB auction is no longer

flat [Ausubel et al., 2014] and BNE bids can be higher or lower than those under maximal

uncertainty, so the bid functions cannot be ranked uniformly. However, as ρ becomes small,

there is effectively no competition as each bidder demands one of two units. Bayesian

bidders know this and therefore bid zero in equilibrium. Maximally uncertain bidders do

not know that there is no competition and compete more intensely than Bayesian bidders.

More formally, both BNE bids converge to zero as ρ → 0, while the first minimax-loss bid

converges to the first-price auction minimax-loss bid of vi1/2 [Kasberger and Schlag, 2024].

In this setting, the bids under maximal uncertainty are higher than in BNE.

Submitted bids also cannot be unambiguously ranked in uniform-price auctions. In the

FRB uniform-price auction, Bayes-Nash equilibria can be collusive in the sense that the

second bid is zero; this can even be the unique BNE [Ausubel et al., 2014, Engelbrecht-

Wiggans and Kahn, 1998, Noussair, 1995]. In contrast, bidders submit two positive bids

under maximal uncertainty because it could be that the other bidder has a very low first bid,

so the bidder would regret not submitting a positive second bid. In the LAB uniform-price

auction, the minimax-loss and BNE bid sometimes share a property called “separability”

and a relation to the bid in the first-price auction. A bid function is separable if the bid

for quantity k only depends on the marginal value for the kth unit. Burkett and Woodward

[2020a] identify a model in which the BNE bid is separable. Moreover, they show that the

equilibrium bid for quantity k is as in a first-price auction with value vk. In contrast, the

minimax-loss bid (5) is separable only if vi2 is sufficiently low. In this case, the first bid

is then also as in a first-price auction. The second, however, is lower than in a first-price
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auction with value vi2.

These qualitative findings—that PAB bids are not flat, and that FRB bids are nonzero

for the second unit—align with experimental work on multi-unit auctions. Engelmann and

Grimm [2009] run laboratory versions of PAB and FRB. Subjects in experimental PAB auc-

tions do not use flat bids but bid spreads that are qualitatively consistent with the minimax-

loss approach [Engelmann and Grimm, 2009]. In the FRB experiment of Engelmann and

Grimm [2009], subjects rarely bid zero on the second item, which is qualitatively consistent

with the minimax-loss approach but not with the equilibrium predictions.

Finally, auction design implications when facing minimax-loss bidders can be in direct

contradiction with design implications when facing Bayesian bidders. The existence of zero-

revenue Bayes-Nash equilibria suggests that the FRB uniform-price auction might not be

a good choice in terms of revenue. However, Figure 2 shows that it leads to the highest

revenue among the three auction formats when the second-highest value is about half of the

highest value. For example, suppose marginal values are constant and perfectly correlated

with v2 = v1/2 + ε for ε positive but small. There clearly exists a zero-revenue equilibrium

in the FRB auction,25 but the FRB auction is revenue-optimal among the three auction

formats under maximal uncertainty. In this setting, the FRB auction is also efficient with

maximally uncertain bidders, while the zero-revenue equilibrium is inefficient. Moreover, in

a setting nested by Proposition 1, Figure 2 of Ausubel et al. [2014] shows that the PAB

auction leads to the lowest expected surplus when ρ is low. We find, however, that the PAB

auction is weakly welfare-dominant among the three formats.

4 Loss in auctions for homogeneous goods

We now establish general properties of the minimax-loss problem. Under maximal uncer-

tainty, bidders believe every possible distribution of opponent bids is feasible. Since degen-

erate distributions are believed to be feasible and turn out to maximize loss, maximum loss

is equivalent to maximum regret. This is a consequence of the linearity of bidder preferences

and not specific to the analysis of auctions or other features of our model.

Lemma 1 (Reduction to maximum regret). Under maximal uncertainty, maximizing loss is

equivalent to maximizing regret. That is, for all values vi and bids bi,

sup
B−i∈B

L
(
bi;B−i, vi

)
= sup

b−i

R
(
bi; b−i, vi

)
.

25Bidder 1’s utility from winning two units is 2v1 − 2v1/2− 2ε = v1 − 2ε, while it is v1 when winning one
unit for free.
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To simplify the regret maximization problem, we decompose it to the related problem

of maximizing conditional regret. Given any quantity q ∈ [0, Q], let Rq (b
i; vi) denote bid-

der i’s (maximal) regret conditional on winning q units. Given a bid bi and an opponent

bid b−i, bidder i’s quantity allocation qi(bi, b−i) is deterministic. Since maximum loss is

identical to maximum regret, which is derived ex post after opponent demand is realized,

it follows that maximum loss is the highest conditional regret from receiving any quantity,

supb−i R(bi; b−i, vi) = supq Rq(b
i; vi). Conditional regret forms the basis of our subsequent

analysis.

4.1 Pay-as-bid auctions

To develop intuition for loss maximization in the pay-as-bid auction, consider the potential

sources of regret in a canonical single-unit first-price auction. Ex post, bids in single-unit

discriminatory auctions are either too high—because the bidder strictly outbids the second-

highest bidder—or too low—because the bidder underbids the highest bidder, whose bid was

below the bidder’s value [Kasberger and Schlag, 2024].26 This same intuition is true pointwise

in multi-unit pay-as-bid auctions: the bidder frequently would prefer to increase their bid

for large quantities and decrease their bid for small quantities. We use this observation to

pin down conditional regret in the pay-as-bid auction.

If bidder i submits bid bi and obtains quantity q, they know that the market-clearing

price is p⋆ ∈ [bi+(q), b
i(q)], where bi+(q) = limq′↘q b

i(q′).27 Their regret is at least

RPAB
q

(
bi; p⋆, vi

)
=

∫ q

0

(
bi (x)− p⋆

)
dx+

∫ Q

q

(
vi (x)− p⋆

)
+
dx.

That is, their regret is at least their overpayment for units they received, plus the utility

foregone by underbidding for units they value above the market-clearing price. This regret

would be realized if, for example, all opponents submitted flat bids at the price p⋆. This

expression is strictly decreasing in p⋆; hence, bidder i’s conditional regret is at least

RPAB
q

(
bi; vi

)
=

∫ q

0

(
bi (x)− bi (q)

)
dx+

∫ Q

q

(
vi (x)− bi (q)

)
+
dx, (6)

since bi+(q) = bi(q) for right-continuous bid functions. Because RPAB
q is the regret the bidder

has in the case in which they wish they had bid slightly more for larger quantities, we refer

to RPAB
q as underbidding regret. The second term can also be written as

∫ vi
−1

(bi(q))

q
vi(x) −

26When bids are neither too high nor too low, regret is zero. Generally, maximal regret will be nonzero.
27For notational simplicity we define bi+(Q) = 0.
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bi(x)dx, where vi
−1

is the right inverse of vi and at most equal to Q:

vi
−1

(y) = sup{x ∈ [0, Q] : vi(x) ≥ y}.

Alternatively, bidder i might be able to obtain the same allocation by bidding just above

zero for all units. This will be the case when their opponents, in aggregate, submit extremely

high bids forQ−q units and zero bids for all remaining units. In this case all nonzero payment

is wasted, and regret is

R
PAB

q

(
bi; vi

)
=

∫ q

0

bi (x) dx.

Because R
PAB

q is the regret the bidder has in the case in which they wish they had bid nearly

zero for all units, we refer to R
PAB

q as overbidding regret.

The conditional regret for quantity q is

RPAB
q (bi; vi) = max

{
R

PAB

q

(
bi; vi

)
, RPAB

q

(
bi; vi

)}
.

Since RPAB
Q (bi; vi) = R

PAB

Q (bi; vi) and R
PAB

q (bi; vi) is weakly increasing in q, maximum loss is

the supremum of underbidding regret, taken over all quantities q.

Lemma 2 (Maximum loss in pay-as-bid). In the pay-as-bid auction, maximal loss given bid

bi is

sup
q

RPAB
q

(
bi; vi

)
.

A proof is given in Appendix A.2.

4.2 Uniform-price auctions

We first establish expressions for underbidding and overbidding regret in the uniform-price

auction, in line with our analysis of pay-as-bid auctions. The market-clearing price is p⋆ ∈
{pLAB, pFRB}. In spite of the potentially large difference in market prices, the strategic

analyses of FRB and LAB differ only in the discrete multi-unit case (Section 3).

In the uniform-price auction, bids above the market-clearing price are relevant only to the

extent that they guarantee a unit is awarded; they do not otherwise affect the bidder’s utility.

This is in contrast to the pay-as-bid auction, where bids above the market-clearing price are

paid whenever the unit is awarded. When bidder i receives quantity q, the market-clearing

price must be p⋆ = bi(q). Bidder i’s underbidding regret is

RUPA
q

(
bi; vi

)
=

∫ Q

q

(
vi (x)− bi (q)

)
+
dx.
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As in the pay-as-bid auction, underbidding regret accounts not only for the fact that the

bidder might regret not bidding just above the market-clearing price, but also for the fact

that the bidder might affect their own transfer.

Alternatively, bidder i might be able to obtain the same allocation by bidding just above

zero for all units. This will be the case when their opponents submit high bids for Q − q

units and submit zero bids for all remaining units. In this case all nonzero bids are wasted,

and regret is higher the higher is the market-clearing price, hence overbidding regret is

R
UPA

q

(
bi; vi

)
= qbi (q) .

This differs from overbidding regret in the pay-as-bid auction, R
PAB

q , since in the uniform-

price auction only the marginal bid is relevant.

The conditional regret for any quantity q is

RUPA
q

(
bi; vi

)
= max

{
RUPA

q

(
bi; vi

)
, R

UPA

q

(
bi; vi

)}
.

Because maximum loss is equal to maximum regret, and ex post regret is obtained at some

allocation, maximal loss may be identified with maximizing conditional regret.

Lemma 3 (Maximum loss in uniform-price). In the uniform-price auction, maximal loss

given bid bi is

sup
q

RUPA
q

(
bi; vi

)
.

5 Unconstrained minimax-loss bids

We now characterize minimax-loss bids when the auctioned good is perfectly divisible. In

contrast with the next section, the bidders are not constrained in their number of bids; they

can submit any weakly decreasing, weakly positive, continuous bid functions. At the end

of the section, we compare the minimax-loss bid functions to those that form a BNE and

discuss design implications.

5.1 Pay-as-bid auctions

Recall that Lemma 2 states that loss is maximized by maximizing underbidding regret. To

minimize the highest underbidding regret across all quantities q, observe that underbidding

regret for quantity q increases in the bids for quantities q′ < q, decreases in the bid for

quantity q, and is unaffected by the bids for quantities q′′ > q. It follows that if bi is an

optimal bid function, then underbidding regret must be constant at all quantities q.
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Lemma 4 (Equal conditional regret in pay-as-bid). If bi is a minimax-loss bid function in

the pay-as-bid auction, then RPAB
q (bi; vi) = RPAB

q′ (bi; vi) for all q, q′ ∈ [0, Q].

Lemma 4 gives a straightforward method for computing minimax-loss bids: minimize

conditional regret for any quantity, subject to equal conditional regret across all quantities.

Although computationally straightforward, optimal bids do not admit a general analytical

form. The formula for conditional regret contains an integral over all units which are valued

more than a given bid, but the range of integration depends not only on the bidder’s values

but also on the prospective bid, which complicates the relationship between bid and loss.

The equal conditional regret condition requires the derivative of conditional regret to

equal zero, which leads to the differential equation in the following theorem. Regarding

the boundary condition, regret conditional on receiving the maximum possible allocation is∫ Q

0
bi(x)dx. The fundamental theorem of differential equations implies that solutions to the

system cannot cross, hence the bid for quantity Q must be minimal.

Theorem 1 (Unconstrained pay-as-bid bids). The unique minimax-loss bid in the uncon-

strained pay-as-bid auction, bPAB, solves

vi (q)− bPAB (q) = −vi
−1 (

bPAB (q)
) dbPAB

dq
(q) , s.t. bPAB (Q) = 0. (7)

The minimax-loss bid is strictly below marginal values and strictly decreasing in quantity q.

If vi(Q) ≥ 1
Q

∫ Q

0
vi(x)e−

x
Qdx, then differential equation (7) can be solved analytically and

the minimax-loss bid in the unconstrained divisible-good pay-as-bid auction equals

bPAB(q) =
1

Q
e

q
Q

∫ Q

q

vi(x)e−
x
Qdx. (8)

The differential equation defining minimax-loss bids in the pay-as-bid auction is similar

to the first-order condition defining best responses in a standard Bayes-Nash equilibrium;

see, e.g., Hortacsu and McAdams [2010], Woodward [2021], and Pycia and Woodward [2025].

The distinction is that in Bayes-Nash equilibrium the first-order condition contains prob-

abilistic effects—increasing the bid for a particular quantity increases the probability that

this quantity is received—while the differential equation in Theorem 1 does not. Intuitively,

this is because regret is an ex post concept.

The minimax-loss bid is unique for any marginal value function. Uniqueness simplifies

the estimation of bidders’ private values if one believes that observed (continuous) bid data

is generated by bidders playing the minimax-loss bids under maximal uncertainty. In this

case, one can infer bidder i’s values from the first-order condition in Equation (7). In con-

trast to the approach relying on BNE equilibrium as the data-generating model, estimating
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values from minimax-loss bids does not require the difficult estimation of the (opponent) bid

distribution [Hortacsu and McAdams, 2010]. From a normative perspective, a unique bid is

attractive as it saves one from further assessing the relative merits of all minimax-loss bids.

The tractability of the minimax-loss bid stands in stark contrast to the typical intractabil-

ity of the BNE in the pay-as-bid auction. As discussed in the introduction, BNE charac-

terizations exist only in relatively simple (usually complete information or one-parameter)

economic settings. Theorem 1 provides a closed-form solution for the minimax-loss bidding

function for sufficiently flat marginal values. The following example illustrates this case. On

the other hand, it is relatively straightforward to numerically compute minimax-loss bids.

Example 2. Let v(q) = θ−ρ · q, where 0 ≤ ρ ≤ θ/(2Q); the bidder has flat marginal values if

ρ = 0 and (non-satiated) quadratic utility if ρ > 0. The bid function in Equation (8) equals

bPAB(q) = θ − ρq︸ ︷︷ ︸
=v(q)

−ρQ− (θ − 2ρQ)e
q
Q
−1.

The upper bound ρ ≤ θ/(2Q) guarantees that marginal values are sufficiently flat: v(Q) ≥
bPAB(0). In this case, v−1(bPAB(q)) = Q for any q and Equation (7) can be solved analyti-

cally. The bidding function reveals that bidders “shade” their marginal values. The bidding

function is non-linear in q unless θ = 2ρQ. In the latter case, bPAB(q) = θ
2Q

(Q− q). ◀

5.2 Uniform-price auctions

We now analyze the unconstrained uniform-price auction. Following Lemma 3, maximum

loss is

LUPA
(
bi; vi

)
= sup

q
RUPA

q

(
bi; vi

)
= sup

q
max

{
RUPA

q

(
bi; vi

)
, R

UPA

q

(
bi; vi

)}
.

That is, maximum loss is a maximum over conditional regrets, which are defined as the higher

of overbidding and underbidding regrets for quantity q. Importantly, the bid for quantity

q only appears in the conditional regrets for quantity q: RUPA
q (bi; vi) and R

UPA

q (bi; vi).

Since RUPA
q is decreasing in bi(q) and R

UPA

q is increasing in bi(q), if bi is a minimax-loss bid

function, then there must be some quantity q so that RUPA
q (bi; vi) = R

UPA

q (bi; vi). Moreover,

regret minimization pins down the bids only for quantities for which conditional regret is

maximal. For other quantities, conditional regret minimization leaves the bids (partially)

indeterminate. The following proposition is immediate.

Proposition 2 (No unique optimal bid in uniform-price). There is not a unique minimax-

loss bid in the unconstrained uniform-price auction.
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Figure 3: Iso-loss curves of unconstrained underbidding and overbidding regret in the
uniform-price auction.

The partial indeterminacy can be illustrated by two iso-loss curves. Given loss L, the

upper iso-loss curve is c(·;L) such that qc(q;L) = L, and the lower iso-loss curve is c(·;L)
such that

∫ Q

q
(vi(x) − c(q;L))+dx = L. The bid b(q) = c(q;L) induces overbidding loss

which is constant in quantity, and the bid b(q) = c(q;L) induces underbidding loss which is

constant in quantity.28 Figure 3 illustrates the two iso-loss curves. The upper iso-loss curve

is always a hyperbola; the lower iso-loss curve depends on marginal values. Bids above the

upper iso-loss curve induce loss above L by inducing overbidding regret above L, and bids

below the lower iso-loss curve induce loss above L by inducing underbidding regret above L.

It follows that the minimax-loss bid must lie entirely between the upper and lower iso-loss

curves.

Figure 3 illustrates the upper and lower iso-loss curves for a loss-level equal to minimax

loss. In the unconstrained case the upper and lower iso-loss curves are tangent to each other.

The bids at the points of tangency are uniquely determined and equal to the conditional

regret minimizing bids. In the example depicted in the figure, there is a single point of

tangency q̂. Other bids are only partially determined; any bid must be below the upper iso-

loss curve and above the lower iso-loss curve. In the figure any decreasing bidding function

in the shaded area is a minimax bid. All minimax bidding functions agree at q̂.

The multiplicity of minimax-loss bids vanishes when strengthening the decision criterion

similar to requiring subgame perfection in Nash equilibria of extensive form games. Recall

that the multiplicity arises because regret is globally maximized at a single quantity q̂ (as in

28The same logic does not apply to the pay-as-bid auction, since overbidding regret is monotonically
increasing in quantity.

25



Figure 3). Hence, if player i plays any minimax-loss strategy, any worst-case bid distribution

is such that bidder i wins q̂. Strengthening the decision criterion to off-path robustness then

requires that even if non-worst-case quantity q ̸= q̂ is won, regret conditional on winning q is

minimized. More generally, the perfection requirement is that even in outcomes that do not

arise in the worst case, the player minimizes conditional regret. In our case, a conditional

regret minimizing strategy minimizes the larger of overbidding regret for quantity q and

underbidding regret for quantity q. Since regret is maximized by conditional regret for some

quantity, a conditional regret-minimaxing bid is a minimax-loss bid and hence a selection of

the minimax-loss correspondence.

Definition 1. The minimax-loss bid bi is a conditional regret minimizing bid if RUPA
q (bi; vi) =

R
UPA

q (bi; vi) for all q ∈ [0, Q].

The appeal of conditional regret minimizing bids is that any bid bi(q) is justifiable ex post.

If another minimax bid was chosen so that the bid for quantity q was below the respective

conditional regret minimizing bid for that unit, then after winning q units, the case can be

made that this bid was too low as it would have been profitable to win more units. Only

the conditional regret minimizing bid does not allow such complaints as the regret of paying

too much for q units serves as a defense.

Conditional regret minimization requires

qbUPA (q) =

∫ Q

q

(
vi (x)− bUPA (q)

)
+
dx

for all q ∈ [0, Q]. The conditional regret minimizing bid is unique because overbidding regret

increases in bid while underbidding regret decreases in bid.

Theorem 2 (Conditional regret minimizing bid in unconstrained uniform-price auction).

In the unconstrained uniform-price auction, there is a unique conditional regret minimizing

bid, bUPA, and this bid solves

qbUPA (q) =

∫ Q

q

(
vi (x)− bUPA (q)

)
+
dx, ∀q ∈ [0, Q].

The theorem implies that bUPA(0) = vi(0), i.e., it is optimal to bid value for the “first

unit.” Moreover, it is optimal to bid 0 for Q: bUPA(Q) = 0.

Although the bidding function of Theorem 2 cannot be compared to all Bayes-Nash

equilibria of the uniform-price auction, it is apparent that it does not resemble “collusive”

low-revenue equilibria that are frequently discussed in the literature [Ausubel et al., 2014,
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Marszalec et al., 2020].29 Indeed, only the bid on the last unit (Q) is zero in a conditional

regret minimizing strategy under maximal uncertainty, while many bids are zero in the

canonical low-revenue Bayes-Nash equilibrium.

As in the pay-as-bid auction (Example 2), there are convenient expressions for the

minimax-loss bids in the uniform-price auction when marginal utility is flat or linear.

Example 3. Let v(q) = θ − ρ · q, where 0 ≤ ρ ≤ θ/Q. The marginal value function is as in

Example 2, with the exception that ρ can now take larger values; the new constraint on ρ

ensures that the utility function is non-satiated on [0, Q]. We distinguish two cases. In the

first case, v−1(b(q)) is less than Q, which is true for q close to 0 (because these bids are close

to v(0)). The conditional regret minimizing bid then solves

b · q =
∫ θ−b

ρ

q

θ − ρx− bdx.

In the second case, v−1(b(q)) equals Q, which holds for q close to Q (since these bids are

close to 0). The conditional regret minimizing bid then solves

b · q =
∫ Q

q

θ − ρx− bdx.

The cutoff q̄ between the two cases is such that v(Q) = bUPA(q̄). Taken together, the condi-

tional regret minimizing bid is

bUPA(q) =

θ −
√

qρ(2θ − qρ) if 0 ≤ q ≤ θ−
√

θ2−ρ2Q2

ρ

(Q−q)(2θ−ρ(q+Q))
2Q

else.

The bid is linear in q only if ρ = 0. In this case, bUPA(q) = θ(Q−q)
Q

. ◀

5.3 Comparison of auction formats

We now compare the minimax-loss bids across auction formats. Previous theoretical work has

identified uniform-price bids as more elastic (i.e., steeper) than pay-as-bid bids [Malvey and

Archibald, 1998; Ausubel et al., 2014; Pycia and Woodward, 2025] in the Bayesian paradigm.

This results from the significant demand-shading incentives for small quantities in the pay-

as-bid auction—where bids for small quantities are paid for all larger quantities—and the

29The existence of collusive-seeming Bayes-Nash equilibria is linked to the absence of supply uncertainty
[Klemperer and Meyer, 1989, Burkett and Woodward, 2020b]. See footnote 17 for an interpretation of supply
uncertainty in our model.
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significant demand-shading incentives for large quantities in the uniform-price auction—

where bids are paid times the quantity for which they are offered. This intuition extends to

the loss-minimization context, provided restriction is made to conditional regret-minimizing

bids in the uniform-price auction. Define the average slope of the bid b to be α = (b(0) −
b(Q))/Q.

Comparison 1 (Uniform-price bids above pay-as-bid bids). The unique conditional regret-

minimizing bid in the uniform-price auction is higher and on average steeper than the unique

minimax-loss bid in the pay-as-bid auction: bUPA ≥ bPAB and αUPA ≥ αPAB.

Although conditional regret minimizing bids in the uniform-price auction are above the

unique minimax-loss bid in the pay-as-bid auction, this is not the case for all selections of

minimax-loss bids in the uniform-price auction. In the uniform-price auction, underbidding

regret for large quantities is necessarily small: uniform pricing implies there is no wedge for

overpayment (as there is in the pay-as-bid auction), and there is little utility foregone by not

receiving a small number of units. Since conditional regret is the larger of overbidding and

underbidding regret, and overbidding regret is increasing in bid, for large quantities there is

a conditional regret-minimizing bid which is equal to zero; this zero bid is below the strictly

positive minimax-loss bid in the pay-as-bid auction.

Comparison 2 (Semi-comparability of optimal bids). If bUPA is a minimax-loss bid in the

unconstrained uniform-price auction, then bUPA ̸≤ bPAB. However, there is a minimax-loss

bid bUPA in the unconstrained uniform-price auction such that bUPA ̸≥ bPAB.

The comparisons of the bid functions imply that the auctioneer’s revenues cannot be

generally compared across the two auction formats. The uniform-price auction will lead to

higher revenue when there are many similar bidders that all win a small quantity; this follows

from Comparison 1. On the other hand, when the value distribution is such that a single

bidder wins a large quantity, then price discrimination in the pay-as-bid auction will yield

to higher revenue. These arguments establish the ambiguous revenue ranking.

Comparison 3 (Ambiguous revenue). Depending on the joint value distribution, both ex-

pected and ex post revenues can be higher in either auction format.

While revenue cannot be ranked across auction formats, bidder loss is uniformly lower in

the uniform-price auction than in the pay-as-bid auction. The existence of multiple minimax-

loss bids in the uniform-price auction does not affect this comparison, because even when

some bids are not uniquely defined, the level of minimax loss is.
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Comparison 4 (Minimax loss). In the unconstrained case, minimax loss is lower in the

uniform-price auction than in the pay-as-bid auction,

sup
B−i∈B

LUPA
(
bUPA;B−i, vi

)
≤ sup

B−i∈B
LPAB

(
bPAB;B−i, vi

)
.

What are the implications of one mechanism having lower minimax loss than another?

Suppose a bidder can obtain costly information about the other bidders’ behavior; this

information will shrink the set of possible bid distributions B. The bidder will tend to

acquire more information when the subsequent auction mechanism yields higher minimax

loss. Thus Comparison 4 implies that bidders in the pay-as-bid auction may obtain more

costly information than bidders in the uniform-price auction.

5.4 Comparison to Bayes-Nash equilibrium

To situate our results in the literature, we compare bids under maximal uncertainty to

those in Bayes-Nash equilibrium in the divisible-good framework of Ausubel et al. [2014].

In this model, bidders have symmetric linear marginal values v(q; θ) = (θ − ρq)+, ρ >

0, and aggregate supply is distributed according to a Pareto distribution with cumulative

distribution function F given by F (Q) = 1−(1+ξQ/(σn))−
1
ξ , where ξ is the shape parameter

and σn is the scale parameter. Equilibrium bids in the uniform-price and pay-as-bid auctions

are bUPA
BNE and bPAB

BNE, respectively, where

bUPA
BNE (q) = θ − n− 1

n− 2
ρq and bPAB

BNE (q) = θ − (n− 1)ρ

n(1− ξ)− 1

(
q +

n

n− 1
σ

)
.

The equilibrium in the uniform-price auction exists only if n > 2 and in the pay-as-bid

auction only if ξ < (n − 1)/n. For the pay-as-bid auction we assume that Q has bounded

support, which is the case if ξ < 0. Let Q denote the upper bound of support. Equilibrium

bids in the uniform-price auction constitute an ex-post equilibrium (cf. Klemperer and

Meyer [1989]), while equilibrium bids in the pay-as-bid auction vary with the distribution of

random supply. The maximum positive-value quantity q∗ = θ/ρ will feature prominently in

our analysis. Let bPAB
MML denote the unique minimax-loss bid in the pay-as-bid auction and

bUPA
MML the unique conditional regret minimizing bid in the uniform-price auction.

5.4.1 Comparison of bids

In the uniform-price auction, bids under maximal uncertainty are below bids in BNE for

small quantities, and may be above bids in BNE for large quantities. Bayesian bidders know
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that competitive pressure is high when there are many bidders or when marginal values are

flat. This information leads bids to be close to value in the BNE while such information is

unknown under maximal uncertainty.

Proposition 3 (Bids in UPA are often more aggressive in Bayes-Nash equilibrium). Either

bUPA
BNE(q) ≥ bUPA

MML(q) for all q ∈ [0, Q], or there is a unique q̂ such that bUPA
BNE(q) > bUPA

MML(q) for

all q ∈ (0, q̂) and bUPA
BNE(q) < bUPA

MML(q) for all q ∈ (q̂, Q). In either case, when ρ is sufficiently

low, then bUPA
BNE(q) > bUPA

MML for all q ∈ (0, Q). As n becomes large, q̂ → Q.

Importantly, equilibrium bids in the uniform-price auction under maximal uncertainty

are unaffected by the number of bidders n. Since equilibrium bids become truthful in the

Bayes-Nash equilibrium of the uniform-price auction as the number of bidders approaches

infinity, in large markets the auctioneer may benefit from inducing BNE behavior where

feasible;30 of course, this will not be true if bidders play a tacitly collusive equilibrium as in

the two-unit case.

With regard to the pay-as-bid auction, a general comparison is hindered by the complex

dependency of BNE bids on the full distribution of aggregate quantity, while bids under

maximal uncertainty depend only on the maximum quantity Q. Nonetheless, we observe the

following.

Proposition 4 (Bids in PAB are often more aggressive in Bayes-Nash equilibrium). When

ρ is sufficiently small, then bPAB
BNE(q) > bPAB

MML(q) for all q < q∗. If Q/n < q∗, then bPAB
BNE(q) >

bPAB
MML(q) for all q > Q/n.

As observed in Pycia and Woodward [2025], BNE bids will exceed values for unobtainable

quantities (those above Q/n). These bids are dominated by bidding value, implying that

the BNE of the pay-as-bid auction is in dominated strategies. The minimax-loss bid is

undominated.

5.4.2 Comparison of equilibrium outcomes

We now compare outcomes under maximal uncertainty to those in Bayes-Nash equilibrium.

In a fixed context it is reasonable to expect strategies from only one of maximal uncertainty or

BNE; comparison of equilibrium outcomes addresses the question of whether the auctioneer

may benefit from driving behavior toward one solution concept or another. For example,

if the auctioneer expects bidders to behave as if under maximal uncertainty, the auctioneer

may be able to release credible information about the auction environment to steer bidders

30Although Proposition 3 is stated and proved in the model of Ausubel et al. [2014], the results of Swinkels
[2001] imply that the Proposition generalizes to uniform-price auctions in general.
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toward BNE strategies. We show below that this will generally be optimal in homogeneous

environments.

We handle each auction format in turn. For pay-as-bid, recall that the supply-optimization

results of Pycia and Woodward [2025] imply that when marginal values are linear, optimal

revenue in the pay-as-bid auction is equal to half the area under the bidders’ true demand

curves.

Corollary 1 (Revenue in optimized pay-as-bid, Pycia and Woodward [2025]). When bidders

have symmetric linear marginal values, vi(q) = (θ− ρq)+, then the revenue generated in the

Bayes-Nash equilibrium of an optimized pay-as-bid auction is πPAB = θ/4ρ.

We now show that under maximal uncertainty even an optimized pay-as-bid auction

generates less revenue than in the optimal Bayes-Nash auction. First, note that loss is

increasing in aggregate quantity: for aggregate quantity Q either v(Q) = 0 and increasing

supply has no impact on loss, or v(Q) > 0 and increasing supply, holding bids fixed, will

increase loss for large quantities. Since Theorem 1 implies that, under maximum uncertainty,

the total area under the bid curve is equal to loss, it follows that revenue is maximized when

aggregate supply is as large as possible; henceforth we will take supply to be infinite. This

implies the following revenue comparison.

Proposition 5 (Revenue comparison of optimized pay-as-bid). When aggregate supply is

set to maximize revenue, Bayes-Nash equilibrium raises strictly greater expected revenue than

maximal uncertainty.

It is straightforward to establish Proposition 5 by graphical contradiction. Because

marginal values are linear, optimal BNE per-capita revenue in the pay-as-bid auction is half

the area under the bidder’s true demand curve. In the pay-as-bid auction under maximal un-

certainty, loss is constant across all possible allocations (Theorem 1). Loss at the maximum

allocation is the area under the bid curve, which is the maximum obtainable revenue. Then

if revenue is to be higher under maximal uncertainty than in BNE, loss must be at least half

the area under the bidder’s marginal value curve. Since loss is constant for all units, loss is

equal to
∫ Q

0
(v(q)− b(0))+dq; that is, the initial bid b(0) is set so that half of the area under

the bidder’s marginal value curve is above b(0), and by implication half is below b(0). But

since bids are strictly decreasing where marginal values are positive and bounded above by

v(·), it follows that the area under the bid curve is
∫ Q

0
b(q)dq <

∫ Q

0
min{b(0), v(q)}dq. Then

revenue under maximal uncertainty is less than half the area under the bidder’s marginal

value curve, and hence less than revenue in BNE.
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Proposition 5 implies that if the auctioneer has sufficient information to optimize supply

in a pay-as-bid auction, they should release this information if they may do so credibly. The

following proposition implies that the same conclusion holds for the uniform-price auction.

Proposition 6 (Revenue comparison of optimized uniform-price). When aggregate supply

is set to maximize revenue, Bayes-Nash equilibrium raises strictly greater expected revenue

than maximum uncertainty.

Maximal uncertainty is the revenue-optimal informational extreme when bidders play a

collusive BNE in the uniform-price auction. In this case, the auctioneer’s optimal information

policy is not to reveal any information about past bidding.

6 Extension: Bidpoint-constrained minimax-loss bids

In practice bidders are frequently constrained from submitting a distinct bid for each quan-

tity. For example, bidders can submit up to 10 bidpoints in Czech treasury auctions [Kastl,

2011] or 40 steps in the Texas electricity market [Hortaçsu et al., 2019]. We now consider

the case in which bidder i can submit up to M bid points, {(qik, bik)}Mk=1, where qik ≤ qik+1

and bik ≥ bik+1 for all k. The implied bid function is a step function

b̂i (q) =

bik if qk−1 ≤ q < qk,

0 if q = Q,

where q0 = 0. Importantly, the quantities at which bids are submitted are a choice variable

for the bidder. In this section we summarize the findings; detailed arguments are found in

Appendix C.

6.1 Pay-as-bid auctions

As in the unconstrained case, the minimax-loss bid in the bidpoint-constrained pay-as-bid

auction equates underbidding regret across all units. The minimax-loss bid is then found by

solving a constrained optimization problem. Intuitively, the bidder minimizes their maximum

payment subject to equal conditional regret across all outcomes. We illustrate the bidding

function for the case in which the bidder has flat marginal values.

Example 4 (Pay-as-bid with flat marginal values). Suppose bidder i’s marginal value is flat,

32



vi(q) = θ for all q. The constrained loss optimization problem is

min
q′,b′

(θ − b′1)Q, s.t.
(
Q− q′k−1

)
(θ − b′k) +

k∑
k′=1

(
q′k′ − q′k′−1

)
(b′k′ − b′k) = (θ − b′1)Q.

Equating conditional loss across units requires RPAB
qk+1

−RPAB
qk

= 0, or

0 = −Qbk+2 − (qk+1 − qk) θ + (Q+ (qk+1 − qk)) bk+1.

Solving this equation recursively, backwards from bM+1 = 0, gives a closed-form expression

for optimal bids conditional on quantities,

bk =
M∑

k′=k

Qk′−k (qk′ − qk′−1)∏k′

j=k [Q+ (qj − qj−1)]
θ.

Minimizing loss then implies

qk =
k

M
Q, and bk =

θ

M + 1

M∑
k′=k

[
M

M + 1

]k′−k

.

Notably, minimax bidpoints are evenly spaced in the quantity space. Figure 5 plots these

bids and compares them to minimax-loss bids of the corresponding uniform-price auction.◀

6.2 Uniform-price auctions

In Section 5.2 we showed that there are typically many minimax-loss bids in the uncon-

strained uniform-price auction. We show in Appendix C that this is in stark contrast to the

bidpoint-constrained uniform-price auction, where there is a unique minimax-loss bid.

We provide some intuition for the uniqueness in the constrained case and contrast it

with the multiplicity of the unconstrained case. Intuitively, when the bidder receives a small

quantity, they do not leave a lot of money on the table due to overbidding, because they

received a small number of units and their total payment is low; they also do not miss

out on significant utility from underbidding, because the market price will tend to be high

and they will not desire many units at this price. Thus the main source of loss is bids

on intermediate quantities, leaving bids on small (and very large) quantities only partially

specified. This stands in contrast to the bidpoint-constrained case where the locations of the

bid steps are choice variables. Given the choice, the bidder will submit relatively dense bids

for intermediate quantities and relatively sparse bids for extreme quantities; the large gaps
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Figure 4: Iso-loss curves of conditional underbidding and overbidding regret in the uniform-
price auction.

between bid points for small units work against the intuition arising from the multi-unit case,

where bidpoint gaps are uniform, that bids for small quantities are not uniquely determined.

The construction of the minimax-loss bid in the constrained uniform-price auction follows

from observing that steps in the implied bid function extend between the two iso-loss curves.

In particular, the minimax-loss bid in the constrained uniform-price auction extends from the

lower iso-loss curve to the upper iso-loss curve, then jumps down to the lower iso-loss curve,

and extends again to the upper iso-loss curve; this continues until a bid of zero is reached.

Figure 4b illustrates this construction for M = 4. If the bid did not extend fully between the

two iso-loss curves, with a slight perturbation the bid could be made to lie strictly between the

two iso-loss curves, which would entail strictly lower loss. Constructing bidpoint-constrained

minimax-loss bids is then straightforward. For loss L such that c(·;L) ≥ c(·;L), let q0 = 0

and for all k ∈ {1, . . . ,M} let bk = c(qk−1;L) and let qk be such that c(qk;L) = bk.
31 If

c(qM ;L) > 0 constrained minimax loss is above L, and if c(qM ;L) < 0 constrained minimax

loss is below L. In either case, a new level of loss L′ may be proposed, and the procedure

continues until c(qM ;L) = 0. Figure 4a illustrates the case when the level of loss is above

the minimax loss. In the figure, the final step q′4 is too high, and loss can be decreased.

The construction of minimax-loss bids between the upper and lower iso-loss curves pro-

vides an intuitive argument for the uniqueness of minimax-loss bids in the uniform-price

auction. Given a level of loss and associated iso-loss curves, either there is no M -step step

function between them, or there is a single M -step step function between them, or there are

31In the event that c(Q;L) > bk, we define qk = Q.
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Figure 5: Minimax-loss bids under flat marginal values, when bidders are constrained to
M ∈ {1, 2, 5} bidpoints. In bidpoint-constrained auctions, minimax-loss bids are unique in
both the pay-as-bid and uniform-price auctions. As the number of bidpoints increases, the
upper and lower iso-loss curves in the uniform-price auction approach tagency.

multiple such step functions between them. If there is no feasible step function between the

iso-loss curves, this level of loss is not feasible and minimax loss is above the assumed loss.

On the other hand, if there are multiple feasible step functions between the iso-loss curves the

iso-loss curves can be brought closer together (by reducing assumed loss) while still allowing

for a feasible step function between them. This improvement in loss is infeasible only when

there is a unique step function between the iso-loss curves, and at that point maximum loss

is minimized.

The following example illustrates the constrained minimax-loss bid function when the

bidder has flat marginal values.

Example 5 (Uniform-price with flat marginal values). Suppose that bidder i’s marginal value

vi is flat, vi(q) = θ for all q. The constrained loss optimization problem is

min
q′,b′

b′1q
′
1, s.t. b′kq

′
k = (θ − b′k) (Q− q′k) ∀k.

The minimax-loss bid induces loss CMQθ, and solves

q0 = 0, qk =

(
CM − C2

M

qk−1 − (1− CM)

)
Q, qM = (1− CM)Q, and bk =

CMθ

qk
.

The solution to this expression is unique: the recursive equation for qk increases in CM ,

while the endpoint condition for qM decreases in CM .32 Figure 5 illustrates these bids and

compares them to the unique minimax-loss bids in the pay-as-bid auction. ◀

Examples 4 and 5 suggest a new testable prediction. With flat marginal values, the

bids in the bidpoint-constrained pay-as-bid auction are evenly spaced, while they are more

32In the unconstrained model (Section 5.2) minimax loss is θQ/4. Since loss is higher when bids are
constrained than when they are unconstrained, it follows that q1 ≥ Q/3 and qM ≤ 3Q/4. That is, minimax-
loss bid points are all for interior quantities.
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clustered around intermediate quantities in the bidpoint-constrained uniform-price auction.

More generally, the location of the bids in the pay-as-bid auction is more dispersed than in

the uniform-price auction.

The examples also show that Comparison 1, which shows that the conditional regret

minimizing bid of the uniform-price auction is higher and steeper than the minimax-loss

bid of the pay-as-bid auction, does not fully extend to the bidpoint-constrained case. In

the constrained case, bids are on average steeper in the uniform-price auction than in the

pay-as-bid auction, αUPA ≥ αPAB, but neither auction’s bids are higher: bUPA
1 > bPAB

1 and

qUPA
M < qPAB

M . By continuity, even if the marginal values are not perfectly flat, the two bid

functions cannot be ranked uniformly in the constrained case.

7 Conclusion

In this paper we have characterized optimal prior-free bids in the pay-as-bid and uniform-

price auctions, the two leading auction formats for allocating homogeneous goods such as

electricity and government debt. The two pricing rules create different incentives for the

bidders; our analysis shows that taking a worst-case loss approach to bid optimization enables

a tractable analysis of the two formats and leads to new testable predictions. Remarkably, our

analysis remains tractable even with multi-dimensional private information because we do

not require the inversion of strategies as in the canonical Bayes-Nash equilibrium approach.

Hence, we believe the worst-case loss approach may also be fruitfully applied to other complex

strategic interactions.
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Pablo Del Ŕıo. Designing auctions for renewable electricity support. best practices from

around the world. Energy for Sustainable Development, 41:1–13, 2017.

Ulrich Doraszelski, Gregory Lewis, and Ariel Pakes. Just starting out: Learning and equi-

librium in a new market. American Economic Review, 108(3):565–615, 2018.

Richard Engelbrecht-Wiggans and Charles M. Kahn. Multi-unit auctions with uniform

prices. Economic Theory, 12(2):227–258, 1998.

Richard Engelbrecht-Wiggans and Charles M Kahn. Multiunit auctions in which almost

every bid wins. Southern Economic Journal, pages 617–631, 2002.

Dirk Engelmann and Veronika Grimm. Bidding Behaviour in Multi-Unit Auctions – an

Experimental Investigation. The Economic Journal, 119(537):855–882, 03 2009.

37



Yingni Guo and Eran Shmaya. Robust monopoly regulation. American Economic Review,

115(2):599–634, 2025.

Yingni Guo and Eran Shmaya. Regret-minimizing project choice. Econometrica, 91:1567–

1593, 2023.

Joseph Y. Halpern and Rafael Pass. Iterated regret minimization: A new solution concept.

Games and Economic Behavior, 74(1):184 – 207, 2012.

C.-Philipp Heller and Lorenz Wieshammer. Die Merit Order und Auktionen auf den eu-
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A Omitted Proofs

A.1 Proofs for Section 3

Proof of Proposition 1. Because there are only two units for sale, it is sufficient to analyze

the two bidders with the highest marginal values for their first units. Denote these bidders

1 and 2, and let bidder i’s marginal values be (vi, ρvi). Without loss of generality assume

that bidder 1’s marginal value for their first unit is above bidder 2’s, v1 > v2. Let τ ∈ [0, 1]

be such that v2 = τv1. Suppose it is efficient that the two bidders with the highest values

win one unit each. This can only be the case if v1 + τv1 ≥ v1 + ρv1, i.e., if and only if τ ≥ ρ.

Note that it cannot be efficient that the bidder with the third-highest value wins anything.

We first show the result when having two winners is efficient. Let τ ≥ ρ. Bidder 1

wins one unit in the PAB auction since bPAB
21 ≥ bPAB

12 . If ρ ≤ 3
7
, then this inequality equals

τv1(3−ρ)
6

≥ ρv1
3
, which is true by assumption. If ρ > 3

7
, then τv1(3+2ρ)

9
≥ ρv1

3
is also true because

τ ≥ ρ ≥ 3ρ
3+2ρ

holds.
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Bidder 1 wins one unit in the FRB uniform-price auction since bFRB
21 ≥ bFRB

12 ⇔ τv1 ≥
ρv1/2 ⇔ τ > ρ/2, which is true by assumption.

Bidder 1 wins one unit in the LAB uniform-price auction since bLAB
21 ≥ bLAB

12 holds. To

see this, note that the inequality is equivalent to τv1
2

≥ ρv1
3

if ρ < 1
2
. This inequality holds by

assumption. If ρ ≥ 1
2
, then bidder 1 wins one unit if τv1(1+ρ)

3
≥ ρv1

3
, which also holds since

τ ≥ ρ ≥ ρ
1+ρ

.

We now prove the welfare ranking when it is ex post efficient for a single bidder to receive

both units. Let ρ > τ . Let ρ ≤ 3
7
. From the previous paragraphs, bidder 1 wins two units in

the PAB auction if τ ≤ 2ρ
3−ρ

. Bidder 1 wins two units in the FRB auction if τ ≤ ρ
2
. Bidder 1

wins two units in the LAB auction if τ ≤ 2ρ
3
. Since the PAB cutoff for τ is higher than the

LAB cutoff and the LAB cutoff is higher than the FRB cutoff ( 2ρ
3−ρ

≥ 2ρ
3
≥ ρ

2
), the PAB is

efficient whenever the LAB is efficient and the LAB is efficient whenever the FRB is efficient.

The same ranking of cutoffs applies when 3
7
≤ ρ ≤ 1

2
(in which case it is 3ρ

3+2ρ
≥ 2ρ

3
≥ ρ

2
) and

when ρ > 1
2
( 3ρ
3+2ρ

≥ ρ
1+ρ

≥ ρ
2
).

A.2 Proofs for Section 4

Proof of Lemma 1. Consider the maximization of loss

sup
b̃

sup
B−i∈B

EB−i

[
û
(
qi(b̃, b−i), ti

(
b̃, b−i

)
; vi

)
− û

(
qi
(
bi, b−i

)
, ti

(
bi, b−i

)
; vi

)]
,

where we have swapped the order of the suprema. Observe that the inner maximization

problem is linear in the choice variable B−i. Winkler [1988] proves that the extreme points

of B are distributions with a single point in the support. Since loss is linear in B−i, maximum

loss is attained at an extreme point.

A.2.1 Analysis of pay-as-bid auctions

Proof of Lemma 2. Lemma 1 proves that loss is maximized by bid distributions with one op-

ponent bid profile in the support, leading to the equivalence of loss and regret. Consider re-

gret R (bi; b−i, vi) and suppose b−i is such that bidder i wins q units: q = qi(bi, b−i). Regret de-

pends on bidder i’s best reply to b−i, which is given by b̃i ∈ arg supb̃ û
(
qi
(
b̃, b−i

)
, ti

(
b̃, b−i

)
; vi

)
.

Let q′ = qi(b̃i, b−i). Regret is then

R
(
bi; b−i, vi

)
=

∫ q′

0

vi(x)− b̃i(x)dx−
∫ q

0

vi(x)− bi(x)dx.
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Regret is decreasing pointwise in b̃i. Instead of maximizing regret with respect to b−i, we

maximize it with respect to b̃i and q′. Note that q′ cannot be strictly lower than q since

bi(x) ≤ vi(x) for all x.

If q′ > q, then regret can be written as∫ q

0

bi(x)− b̃i(x)dx+

∫ q′

q

vi(x)− b̃i(x)dx.

To win q′ units, b̃i(x) ≥ bi(q) must be true for all x ∈ [0, q′]. To see this, note that bidder

i does not win more than q units with bid bi(q). Hence, to win q′ > q units, bidder i needs

to bid at least this much. The quantity q′ that then maximizes regret is either Q or such

that vi(q′) = bi(q). This leads to the expression for underbidding regret in Equation (6). A

worst-case opponent bid profile is such that they all submit flat bids at bi(q).

If q′ = q, then regret equals ∫ q

0

bi(x)− b̃i(x)dx.

Regret is clearly maximized if b̃i(x) = 0, leading to overbidding regret R
PAB

q (bi; vi). A worst-

case bid profile is such that there is one other bidder who bids vi(0) for quantities below

Q− q and nothing else.

A.2.2 Analysis of uniform-price auctions

Proof of Lemma 3. The proof of this claim is substantially similar to the proof of the equiv-

alent result for the pay-as-bid auction (Lemma 2) and is omitted.

A.3 Proofs for Section 5

A.3.1 Pay-as-bid auctions

Proof of Lemma 4. We show that RPAB
q (bi; vi) =

∫ Q

0
bi(x)dx for all q. First, since

∫ q

0
bi(x)dx

is weakly increasing in q, Lemma 2 implies that maximum loss is

max

{
sup

q∈[0,Q)

RPAB
q

(
bi; vi

)
,

∫ Q

0

bi(x)dx

}
.

Note that increasing all bids by ε > 0 will weakly decrease Rq(b
i; vi) for all q and strictly in-

crease
∫ Q

0
bi(x)dx. Then, if bi is loss-minimizing, it must be that

∫ Q

0
bi(x)dx ≥ supq R

PAB
q (bi; vi).

Similarly, decreasing all bids by ε > 0 strictly decreases
∫ Q

0
bi(x)dx and continuously affects
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RPAB
q (bi; vi), thus

∫ Q

0
bi(x)dx = supq R

PAB
q (bi; vi).33

Now, suppose that there is q ∈ [0, Q) with RPAB
q (bi; vi) <

∫ Q

0
bi(x)dx. If bi(q) = 0, then

RPAB
q

(
bi; vi

)
=

∫ q

0

bi(x)dx+

∫ Q

q

vi(x)dx ≥
∫ Q

0

bi(x)dx =

∫ q

0

bi(x)dx.

This is a contradiction, and it must be that bi(q) > 0. In this case, reducing bi(q) will

weakly increase RPAB
q (bi; vi), strictly decrease RPAB

q′ (bi; vi) for all q′ > q, and will not affect

RPAB
q′ (bi; vi) for q′ < q; reducing bi(q) also reduces

∫ Q

0
bi(x)dx, and the arguments above

show that increasing all bids by some small amount will strictly reduce loss. It follows that

RPAB
q (bi; vi) =

∫ Q

0
bi(x)dx for all q.

Proof of Theorem 1. Lemma 4 establishes that the derivative of underbidding regret must

equal zero for all q ∈ [0, Q]. Recall that underbidding regret can be written as

∫ q

0

b(x)− b(q)dx+

∫ v−1(b(q))

q

v(x)− b(q)dx.

The first derivative of underbidding regret with respect to q is

−
∫ q

0

b′(q)dx−
∫ v−1(b(q))

q

b′(q)dx+ (v(v−1(b(q)))− b(q))
1

v′(v−1(b(q)))
− (v(q)− b(q)).

This straightforwardly simplifies to the derivative set equal to zero in Equation (7).

It remains to establish the initial condition and uniqueness. Because bi(Q) ≥ 0 by

constraint, it is sufficient to show that bi(Q) cannot be strictly positive. By the fundamental

theorem of differential equations (the Picard–Lindelöf theorem), if there are solutions bi and

b̃i with bi(Q) = 0 < b̃i(Q), then bi ≤ b̃i. The differential form ensures equal conditional regret

for all units, and conditional regret for unit q = Q under bid b̃i is
∫ Q

0
b̃i(x)dx >

∫ Q

0
bi(x)dx.

Then maximum loss is lower under bid bi than under bid b̃i, and b̃i is not a minimax-loss

bid. Then bi(Q) = 0 for any minimax-loss bid, and uniqueness follows from the fundamental

theorem of differential equations.

We now show that the minimax-loss bid vector is strictly below marginal values wherever

v > 0. To see this, recall that we assumed v(Q) > 0 (and the corresponding discussion

in footnote 10). The above implies that bPAB(Q) = 0 < v(Q). Then if there is q with

bPAB(q) = v(q) > 0, there is a maximal such quantity (because dbPAB/dq is continuous),

33A bid function which is not strictly positive—i.e., for which there exists q with bi(q) = 0—cannot be

uniformly decreased by ε. Nonetheless, decreasing the bid by ε where possible will decrease
∫ Q

0
bi(x)dx and

will continuously affect supq R
PAB
q (bi; vi).
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denoted by q̄. Equation (7) implies that the derivative of bPAB is zero at q̄, which contradicts

the assumption that q̄ is the maximal quantity with bPAB(q) = v(q) > 0. It follows that

bPAB(q) < v(q) for all q ∈ [0, Q].

The minimax-loss bid vector is strictly decreasing in quantity wherever v > 0. This

follows from the left-hand side of Equation (7) being negative (due bids being below marginal

values) and inverse marginal values (v−1) being positive.

If v(Q) ≥ b(0), then v−1(b(q)) = Q for all q ∈ [0, Q]. It can be directly verified that the

first derivative of the bidding function in Equation (8) is as in Equation (7).

A.3.2 Uniform-price auctions

Proof of Proposition 2. Note that maximal regret is strictly positive for any non-degenerate

vi. Consider the bid bi(0). Overbidding regret is R
UPA

0 (bi; vi) = 0·bi(0) = 0 and underbidding

regret equals RUPA
0 (bi; vi) =

∫ Q

0
(vi(x)− bi(0))+ dx. Hence, since minimax regret is positive,

any bid bi(0) = vi(0)− ε with ε > 0 but small is optimal.

A.3.3 Comparison of auction formats

Proof of Comparison 1. We first prove that when bUPA is conditionally regret minimizing

and bPAB minimizes loss in the pay-as-bid auction, then bUPA(q) ≥ bPAB(q) for all q ∈ [0, Q].

Note first that bPAB(Q) = bUPA(Q) = 0. Next, observe that if bPAB(q) = bUPA(q) = b, then

dbPAB(q)

dq
= −v(q)− b

v−1(b)
> − v(q)

v−1(b)
=

dbUPA(q)

dq
. (9)

Hence, if the bids for a quantity are the same, then the absolute value of the slope of the

UPA bid function is higher than the absolute value of the slope of the PAB bid function.

Consequently, for q′ marginally below q, the UPA bids are strictly higher than the PAB bids.

It follows that bPAB(q′) < bUPA(q′) for q′ < Q as well as the overall comparison.

The comparison of the average slope follows immediately from bPAB(Q) = bUPA(Q) = 0

and bPAB(0) < bUPA(0) = v(0).

Proof of Comparison 2. In light of Comparison 4, we first show that the initial bid in the

uniform-price auction must lie above the initial bid in the pay-as-bid auction. Specifi-

cally, RPAB
0 (bPAB; vi) =

∫ Q

0
(vi(x) − bPAB(0))+dx = LPAB and RUPA

0 (bUPA; vi) =
∫ Q

0
(vi(x) −

bUPA(0))+dx ≤ LUPA ≤ LPAB. It follows that bUPA(0) ≥ bPAB(0), and thus it cannot be that

bUPA < bPAB.

Second, observe that for q close to Q underbidding loss becomes arbitrarily close to 0 in

the uniform-price auction. Thus, the lower iso-loss curve must intersect the horizontal axis
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at some q < Q, implying the existence of a minimax-loss bid which is zero for quantities

strictly below Q. Since the minimax-loss bids in the pay-as-bid auction are positive for all

q < Q (Theorem 1), there exists a minimax-loss bid in the uniform-price auction which is not

everywhere above the unique minimax-loss bid in the unconstrained pay-as-bid auction.

Proof of Comparison 4. Let q be the quantity for which worst-case loss equals conditional

regret in the uniform-price auction, and let bUPA denote the conditional regret minimizing

bids of the uniform-price auction. Then we have that

sup
B−i∈B

LUPA
(
bUPA;B−i, vi

)
=

∫ Q

q

(
vi (x)− bLAB (q)

)
+
dx

≤
∫ Q

q

(
vi (x)− bPAB (q)

)
+
dx

≤
∫ Q

q

(
vi (x)− bPAB (q)

)
+
dx+

∫ q

0

bPAB(x)− bPAB(q)dx

= sup
B−i∈B

LPAB
(
bPAB;B−i, vi

)
,

where we use that bPAB ≤ bUPA (Comparison 1) and the fact that underbidding regret involves

lowering the bids on [0, q].

A.3.4 Comparison of bids

From Example 3, define functions bL and bR by

bL (q) = θ −
√
(2θ − ρq) ρq, bR (q;Q) =

(Q− q) (2θ − (q +Q) ρ)

2Q
.

With these definitions, we can write the conditional regret minimizing bid in the uniform-

price auction as

bUPA (q) =

bL (q) if 0 ≤ q ≤ θ−
√

θ2−ρ2Q2

ρ
,

bR (q) otherwise.

Lemma 5 (Comparison of piecewise components of bUPA). For all q ∈ [0, Q], bL(q) ≥ bR(q).

Proof. The bid function bL equates overbidding and underbidding loss for quantity q when

b(q) > v(Q), and the bid function bR equates overbidding and underbidding loss for quantity

q when v−1(b(q)) = Q. Note that Q does not directly affect bL. Moreover, whenever

v(Q) > 0, increasing Q increases the underbidding loss associated with any quantity q

such that v(Q) > bR(q;Q) without affecting the overbidding loss. Then increasing Q must
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weakly increase bids for such quantities. For any such quantity bids increase in Q until

bR(q;Q) = bL(q), and beyond this point the bid for this quantity is unaffected by Q.

Proof of Proposition 3. Appealing to Lemma 5, we establish the first point by analyzing bL

and bR separately. First, when extended to the entire real line bL and bUPA
BNE cross exactly

twice. To see this, we define η = (n− 1)/(n− 2) and check

θ −
√

(2θ − ρq) ρq = θ − ηρq ⇐⇒ η2ρ2q2 = (2θ − ρq) ρq.

This equation has a trivial solution at q = 0, and a nontrivial solution at a unique q∗L > 0.

We note that for q ∈ (0, q∗L), bL(q) < bUPA
BNE(q), while for q > q∗L, bL(q) > bUPA

BNE(q).

Second, when extended to the entire real line bR and bUPA
BNE also cross exactly twice. To

see this, we check

(Q− q) (2θ − (q +Q) ρ)

2Q
= θ − ηρq ⇐⇒ 2Qηρq = 2θq +

(
Q2 − q2

)
ρ.

This quadratic equation has solutions at [(2θ−2ηρQ)±
√
(2θ − 2ηρQ)2 + 4Q2ρ2]/[2ρ]. Com-

paring the discriminant to the leading term reveals that one solution is negative, hence there

is a unique crossing point at a positive quantity, which we denote by q∗R > 0. Lemma 5 then

implies that for q ∈ [0, q∗R), bR(q) < bUPA
BNE(q), and for q > q∗R, bR(q) > bUPA

BNE(q).

The leading result of Proposition 3 is a consequence of the following observation: either

bUPA
MML(q) ≤ bUPA

BNE(q) for all q ∈ [0, Q], or there is a crossing point q̂ at which bUPA
MML(q̂) = bUPA

BNE(q̂).

The preceding arguments establish that bUPA
MML cannot cross bUPA

BNE from above for q ∈ (0, Q),

hence bUPA
MML(q) > bUPA

BNE(q) for all q ∈ (0, Q).

Now note that as n tends to infinity, bUPA
BNE → θ− ρq = v(q; θ) since (n− 1)/(n− 2) → 1.

Since bids under maximal uncertainty are always below value, BNE bids are higher. Similarly,

when ρ is very close to 0 the BNE bid is essentially θ for all quantities.

Proof of Proposition 4. BNE bids are arbitrarily close to θ for all q if ρ is sufficiently close to

0. These bids are therefore higher than bids under maximal uncertainty, which are boundedly

far from θ when q is small, irrespective of ρ. Let Q/n < q∗. Pycia and Woodward [2025,

Theorem 1] implies that bPAB
BNE(Q/n) = v(Q/n; θ). Hence, BNE bids for larger quantities are

above value and therefore above the bids under maximal uncertainty.
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A.3.5 Comparison of equilibrium outcomes

Proof of Proposition 6. By Lemma 5, for all q ∈ [0, Qi],

θ −
√
(2θ − ρq) ρq ≥ (Q− q) (2θ − (Q+ q) ρ)

2Q
.

Then we may bound revenue under maximal uncertainty by(
θ −

√
(2θ − ρq) ρq

)
nq.

Optimizing this expression with respect to q requires

(
θ −

√
(2θ − ρq) ρq

)
n−

[
θ − ρq√

(2θ − ρq) ρq

]
nρq = 0.

This expression may be rearranged to solve

(2θ − ρq) θ2ρq = (3θ − 2ρq)2 ρ2q2.

Letting x ≡ ρq/θ, this is solved at

4x3 − 12x2 + 10x− 2 = 0. (10)

We now consider the zeros of this cubic. Its derivative is 12x2− 24x+10, which has zeros at

1± 1
12

√
24. Since Equation (10) is zero when x = 1, it follows that there is at most a single

zero on the interval x ∈ (0, 1); and, as the first-order condition for a profit-maximization

problem, there will be exactly one solution in (0, 1).

It suffices to show that (10) is positive at q such that bUPA
BNE(q) = bUPA

MML(q). From the proof

of Proposition 3, this quantity q⋆ is such that 2θ = (1+η2)ρq⋆. By the substitution x = ρq/θ

we check the sign of (10) at x = 2/(1 + η2). Since η ∈ [1, 2] it is sufficient to check the sign

of (10) for x ∈ [2/5, 1]. We check

4

(
2

5

)3

− 12

(
2

5

)2

+ 10

(
2

5

)
− 2 =

32

125
− 48

25
+

20

5
− 2 =

1

125
(32− 240 + 500− 250) > 0.

Then (10) is positive at x = 2/5 and hence is positive for all x ∈ [2/5, 1], by properties of the

cubic established above. It follows that q⋆MML is to the left of q∗, and hence bUPA
MML(q

⋆
MML) <

bUPA
BNE(q

⋆
MML). Then optimal revenue under maximal uncertainty is below optimal revenue in

Bayes-Nash equilibrium.
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B Increasing marginal values

In this appendix we analyze bidding with increasing marginal values in the two-unit case.

Marginal values are vi1 and vi2 and such that 0 ≤ vi1 < vi2. Bidder i submits two bids bi1

and bi2. By the auction rules, bi1 and bi2 are the expressed willingnesses to pay for the first

and second units, respectively. Note that bi2 > vi2 cannot be optimal; hence, let bi2 ≤ vi2.

B.1 Pay-as-bid auction

In the pay-as-bid auction, maximal loss is analogous to Equation (1):

max
{
((vi1 − bi1) + (vi2 − bi1))+ , (bi1 − bi2) + (vi2 − bi2) , bi1 + bi2

}
;

the only difference is that when bidder i loses the auction but could have won at least

one unit, winning two units is always better than winning just one. When marginal values

are relatively similar and bi1 > bi2, then the minimax-loss bid vector is as with decreasing

marginal values: bPAB
i1 = 1

9
(3vi1 + 2vi2) and bPAB

i2 = vi2
3
.

Observe that this optimal bid vector is consistent with bi1 ≥ bi2 only if 3vi1 ≥ vi2. In

this case, the bid for the first unit is also less than vi1. In the other case, the constraint

bi1 ≥ bi2 is binding and the case in which nothing is won is not a worst case (because regret

conditional on winning one unit is always higher).34 The minimax-loss bid vector is

bPAB
i1 =

1
9
(3vi1 + 2vi2) if 3vi1 ≥ vi2

vi2
3

if 3vi1 < vi2
and bPAB

i2 =
vi2
3
.

Note that with strongly increasing marginal values, the bid is independent of vi1.

B.2 First rejected bid uniform-price auction

In the first rejected bid uniform-price auction, the conditional regret minimizing bid bFRB
i1 =

vi1 and bFRB
i2 = vi2

2
is optimal and feasible as long as 2vi1 ≥ vi2. In general, maximal regret

34Because bi1 = bi2 = b a bidder who wins a single unit can never simultaneously win a second unit and
save payment for the first unit, and regret in this case is at least vi2 − b. If the bidder wins zero units,
regret can only be maximized if she would prefer to win two units, in which case she would receive utility
vi1 − b < 0 for the first unit and utility vi2 − b for the second unit. Then receiving zero units always results
in less loss than receiving a single unit.
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equals

max

(vi1 − bi1 + vi2 − bi1)+︸ ︷︷ ︸
(i)

, (bi1 − vi1)+ , bi2, vi2 − bi2︸ ︷︷ ︸
(ii)

, 2bi2 − vi1 − vi2, 2bi2 − vi2︸ ︷︷ ︸
(iii)

 .

These are the regrets associated with (i) winning nothing but wanting to win two units; (ii)

winning one unit but wanting to win zero, one, or two units, respectively; (iii) winning two

units but wanting to win zero or one unit. Note that the last case dominates the second-last

and that if bi1 = bi2, then bi1 = bi2 > bi1 − vi1. Moreover, if bi1 = bi2 and vi1 < bi1, then

vi2 − bi2 > vi1 − bi1 + vi2 − bi1. Hence, maximal loss is minimized by bidding

bFRB
i1 =

vi1 if 2vi1 ≥ vi2
vi2
2

else
and bFRB

i2 =
vi2
2
.

As in the pay-as-bid auction, with strongly increasing marginal values minimax-loss bids are

independent of vi1.

B.3 Last accepted bid uniform-price auction

Recall that the conditional regret minimizing bid is bLAB
i1 = (vi1 + vi2)/3 and bLAB

i2 = vi2/3

in the LAB uniform-price auction when the marginal values are sufficiently flat. Since

bLAB
i1 ≥ bLAB

i2 for all values of vi1 and vi2, the bid is optimal and feasible also for increasing

marginal values.

C Bidpoint-constrained minimax-loss bids

The appendix contains the detailed analysis of the bidpoint-constrained case of Section 6

and discusses design implications.

C.1 Pay-as-bid auctions

Equating underbidding regret across all units leads to the following expression for minimax-

loss bids.

Theorem 3 (Constrained minimax-loss bids in pay-as-bid). The unique minimax-loss bid
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in the constrained pay-as-bid auction solves

(
qPAB, bPAB

)
∈ argmin

q′,b′

∫ Q

0

(
vi (x)− b̂′(q0)

)
+
dx,

s.t.

∫ q′k

0

(
b̂′ (x)− b̂′ (q′k)

)
dx+

∫ Q

q′k

(
vi (x)− b̂′ (q′k)

)
+
dx

=

∫ Q

0

(
vi (x)− b̂′(q0)

)
+
dx

for all k = 1, 2, . . . ,M.

Proof of Theorem 3. This proof is substantially similar to proof of the equivalent result for

the unconstrained pay-as-bid auction (Lemma 4). As in the proof of Lemma 4, Lemma 2

implies that the loss minimization problem is

(q⋆, b⋆) ∈ argmin
(q′,b′)

[
max

k∈{0,1,...,M}

[
max

{
Rq′k

(
b′; vi

)
, Rq′k

(
b′; vi

)}]]
.

By definition, RPAB
qM

(b; vi) ≥ R
PAB

qk
(b; vi) for all k. Then the loss optimization problem in the

pay-as-bid auction can be written

(q⋆, b⋆) ∈ argmin
(q′,b′)

[
max

k∈{0,1,...,M}
RPAB

qk

(
b′; vi

)]
.

Recall that

RPAB
qk

(
b′; vi

)
=

∫ qk

0

(
b̂′ (x)− b̂′ (qk)

)
dx+

∫ Q

qk

(
vi (x)− b̂′ (qk)

)
+
dx.

Note that RPAB
qk

decreases as qk increases while, for all k′ > k, RPAB
qk′

increases as qk increases.

It follows that if (q⋆, b⋆) is optimal, then RPAB
qk

(b⋆; vi) = RPAB
qk′

(b⋆; vi) for all k, k′.

We now show how to find the bidpoint-constrained minimax-loss bids in Example 4.

Calculations for Example 4. Equating conditional loss across units requires Rk+1 − Rk = 0
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for all k. This is

0 =

[
k+1∑
k′=0

(bk′ − bk+2) (qk′ − qk′−1) + (Q− qk+1) (θ − bk+2)

]
−[

k∑
k′=0

(bk′ − bk+1) (qk′ − qk′−1) + (Q− qk) (θ − bk+1)

]
= (bk+1 − bk+2) (qk+1 − qk) + (Q− qk+1) (θ − bk+2)

+
k∑

k′=0

(bk+1 − bk+2) (qk′ − qk′−1)− (Q− qk) (θ − bk+1)

= (bk+1 − bk+2) qk+1 + (Q− qk+1) (θ − bk+2)− (Q− qk) (θ − bk+1)

= −Qbk+2 − (qk+1 − qk) θ + (Q+ (qk+1 − qk)) bk+1.

Let gk ≡ qk − qk−1 be the gap between the kth and k + 1th bid points. Then we have

(Q+ gk+1) bk+1 = gk+1θ +Qbk+2 ⇐⇒ bk+1 =
gk+1

Q+ gk+1

θ +
Q

Q+ gk+1

bk+2

⇐⇒ bk =
gk

Q+ gk
θ +

Q

Q+ gk
bk+1.

We now solve recursively for optimal bids, conditional on bid points. When k = M , we have

bk+1 = 0 by assumption, and bM = gM
Q+gM

θ. For k < M , we have

bk =
M∑

k′=k

Qk′−kgk′∏k′

j=k [Q+ gj]
θ.

Since R0 = (θ− b1)Q, the loss-minimization problem is (dropping the irrelevant constants θ

and Q)

min
g

1−
M∑
k=1

Qk−1gk∏k
k′=1 [Q+ gk′ ]

= min
g

1−
∑M

k=1
1

Q+gk

∏M
k′=k [Q+ gk′ ]Q

k−1gk∏M
k′=1 [Q+ gk′ ]

= min
g

∏M
k′=1 [Q+ gk′ ]−

∑M
k=1

1
Q+gk

∏M
k′=k [Q+ gk′ ]Q

k−1gk∏M
k′=1 [Q+ gk′ ]

.
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Denote the numerator by AM . We show that AM = QM . First, A1 = Q:

A1 = [Q+ g1]−
1

Q+ g1
[Q+ g1] g1 = Q.

The result follows by induction on M ; assuming AM = QM , we have

M+1∏
k′=1

[Q+ gk′ ]−
M+1∑
k=1

1

Q+ gk

M+1∏
k′=k

[Q+ gk′ ]Q
k−1gk

= [Q+ gM+1]

[
QM +

M∑
k=1

1

Q+ gk

M∏
k′=k

[Q+ gk′ ]Q
k−1gk

]
−

M+1∑
k=1

1

Q+ gk

M+1∏
k′=k

[Q+ gk′ ]Q
k−1gk

= [Q+ gM+1]Q
M +

M∑
k=1

1

Q+ gk

M+1∏
k′=k

[Q+ gk′ ]Q
k−1gk −

M+1∑
k=1

1

Q+ gk

M+1∏
k′=k

[Q+ gk′ ]Q
k−1gk

= [Q+ gM+1]Q
M −QMgM+1 = QM+1.

Then the loss minimization problem is

min
g

QM∏K
k=1 [Q+ gk]

, s.t. gk ≥ 0 and
M∑
k=1

gk ≤ Q.

This is solved by gk = Q/M . The resulting bids are

bk|M =
M∑

k′=k

Qk′−kgk′∏k′

j=k [Q+ gj]
θ =

M∑
k′=k

1
M
Qk′−k+1∏k′

j=k

[
M+1
M

Q
]θ

=
M∑

k′=k

1
M
Qk′−k+1[

M+1
M

Q
]k′−k+1

θ =
θ

M

M∑
k′=k

[
M

M + 1

]k′−k+1

.

C.2 Uniform-price auctions

The following theorem proves that there is a unique minimax-loss bid in the constrained

uniform-price auction.

Theorem 4 (Minimax-loss bids in constrained uniform-price auction). In the bidpoint-
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constrained uniform-price auction with M bid points, the unique minimax-loss bid solves

(
qUPA, bUPA

)
∈min

q′,b′
R,

s.t. q′kb
′
k = R ∀k ∈ {1, . . . ,M} ,

and

∫ Q

q′k−1

(
vi (x)− b′k

)
+
dx = R ∀k ∈ {1, . . . ,M} .

Proof of Theorem 4. We first prove that the minimax bid (bi, qi) must solve

b1q1 = bkqk for k ∈ {1, 2, . . . ,M} , and

b1q1 =

∫ Q

qk−1

(
vi (x)− bk

)
+
dx for k ∈ {1, 2, . . . ,M + 1} .

Let k denote the largest index for which maximal loss is attained, i.e, either k = M + 1 if

supB−i∈B L
UPA(bi;B

−i, vi) =
∫ Q

qM
vi(x) dx or

k = max

{
k′ : sup

B−i∈B
LUPA

(
bi;B

−i, vi
)
= max

{
RUPA

qk′−1
, R

UPA

qk′

}}
.

Let k < M + 1. We show that RUPA
qk−1

= R
UPA

qk
. Suppose RUPA

qk−1
> R

UPA

qk
. As bk appears in

only these two expressions, raising bk decreases only Rqk−1
and increases only R

UPA

qk
. Suppose

RUPA
qk−1

< Rqk . Decreasing bk decreases R
UPA

qk
and increases RUPA

qk−1
. We do not have to worry

about the effect on RUPA
qk

as RUPA
qk

< R
UPA

qk
.

Let k = M + 1. Observe that
∫ Q

qM
vi(x) dx = RUPA

qM
≤ RUPA

qM−1
as underbidding regret

decreases in bk and qk−1. As regret is maximized by M + 1, the inequality must hold with

equality. The argument of the previous paragraph implies RUPA
qM−1

= R
UPA

qM
. The result follows.

We now prove that a unique solution exists. To do so, note that we can express bk as a

function of qk−1 and qk by solving

bkqk =

∫ Q

qk−1

(
vi (x)− bk

)
+
dx

for bk. The left-hand side increases in bk and is 0 at bk = 0. The right-hand side decreases in

bk, is positive for bk = 0, and tends to 0 as bk increases. Thus, there is a unique bk(qk−1, qk)

that solves the equation. The bid bk(qk−1, qk) decreases in qk−1 and qk.

We then proceed by expressing qk′ as a function of q1 by solving b1(q0, q1)q1 = bk′(qk′−1, qk′)qk′

iteratively for qk′ , k
′ ∈ {2, 3, . . . ,M}. There is a unique qk′ for each q1. Finally, the condition

bM(qM−1(q1), qM(q1))qM(q1) =
∫ Q

qM (q1)
vi(x) dx pins down q1.
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C.3 Design implications

Recall from the end of Section 6 that the minimax-loss bid in the constrained uniform-price

auction drops to 0 at a quantity at which the minimax-loss bid in the constrained pay-as-bid

auction is still positive under flat marginal values. The ambiguous revenue comparison is

immediate.

Comparison 5 (Ambiguous revenue). Depending on the joint value distribution, both ex

post and expected revenues can be higher in either constrained auction format.

We illustrate the ambiguous revenue comparison in the following numerical example.

Example 6. We simulate bidpoint-constrained auction outcomes for different choices of the

number of allowed bid pointsM . In the simulated auctions the available quantity is Q = 100,

hence the locations of bidpoints correspond to percentage of aggregate supply. We vary the

number of bidders from n = 2 to n = 10. Bidders’ marginal values are flat, v(q) = θ, where

θ follows a truncated lognormal distribution with support θ ∈ [0.5, 2] and mean 1. For each

number of allowed bid points, M , we first compute constrained minimax-loss bids in both

the pay-as-bid and uniform-price auctions. In the pay-as-bid auction bids are obtained from

the expressions in Example 4; in the uniform-price auction bids are obtained from the simple

search procedure outlined in Section 6.2.

Figure 6 plots average auction revenue as a function of the number of bid points M .

As expected, increasing the number of bidders increases the seller’s expected revenue: the

highest value of n independent draws increases in n in expectation. In general, revenue is

ambiguous in the auction format and the number of bid pointsM . As observed in Examples 4

and 5, bidders in a pay-as-bid auction with a single bid point will bid half their value for

the full market quantity, and bidders in a uniform-price auction with a single bid point will

bid more than half their value for less than the full market quantity. Revenue in the pay-as-

bid auction is therefore half the highest marginal value, while revenue in the uniform-price

auction is more than half the second-highest marginal value. It follows that expected revenue

will be higher in the pay-as-bid auction when both the number of bid points and the number

of bidders are small.

Although average revenues may be ranked, reverse rankings can be observed ex post.

Figure 6 also compares ex post revenues and depicts the share of simulated auctions in

which uniform-price revenue is higher than pay-as-bid revenue. As the number of bidders

increases, the share of auctions in which revenue is higher in the uniform-price auction

increases. Low-revenue outcomes mainly appear in uniform-price auctions with two bidders,

and these “collusive” outcomes are less likely when there are many bidders. The uniform-

price auction dominates the pay-as-bid auction with ten bidders in terms of revenue in
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Figure 6: Average revenue (left) and ex post revenue comparison (right) as a function of
number of bid points M .

expectation and ex post in the majority of auctions. The ambiguous, setting-dependent

revenue ranking is in line with empirical results on multi-unit auctions.35 Nonetheless, it

is generally true that increasing the number of bidders increases the performance of the

uniform-price auction relative to the pay-as-bid auction. Because initial bids are relatively

high in the uniform-price auction and bids are relatively inelastic, increasing the number of

bidders has strong upward influence on the market-clearing price, and thus on revenue. ◀

Figure 6 reveals that expected revenues can increase or decrease in the number of bid-

points M . While a general analysis is beyond the scope of the paper, we provide the optimal

M in two special cases.

Proposition 7. When all bidders have flat marginal values, then the welfare-maximizing

number of bid steps is M = 1. When there are infinitely many bidders, then revenue is

maximized by M as large as possible.

Proof. In the case of flat marginal values, it is efficient that the bidder with the highest type

wins everything. Any auction selects the bidder with the highest type as the winner when

M = 1.

When revenue is the objective and there are many bidders, then each bidder wins at most

an arbitrarily small quantity. Since b(0) then determines revenue and b(0) is maximized

by M = ∞ (because otherwise the bid is an average across lower values), the revenue-

maximizing choice of M does not constrain the bidders.

35See Pycia and Woodward [2025] for a summary of the ambiguous revenue rankings obtained in the
empirical literature.
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D Last accepted bid uniform-price auction

In this appendix, we provide the details on bidding in the last accepted bid uniform-price

auction where bidders demand up to two units. Building on the analysis of the first rejected

bid uniform-price auction in Section 3, we only provide the key steps of the analysis the

uniform-price auction with the last accepted bid as the market-clearing price. We again

restrict attention to bids below value: bij ≤ vij for j = 1, 2.

Case 1: zero units. As in the pay-as-bid auction, if the bidder wins zero units they know

that they have underbid the two opponent bids. Their bids are most suboptimal if they

could marginally increase their bid and win as many units as they desire, in which case loss

is [
(vi1 − bi1) + (vi2 − bi1)+

]
− 0 = (vi1 − bi1) + (vi2 − bi1)+ .

The worst case bid distribution puts the two highest opponent bids marginally above bi1.

Case 2: one unit. Conditional on winning one unit, the bidder overbids if bi1 sets the

market-clearing price (and c1 = vi1 and c2 = 0) and underbids if the market-clearing price is

just above bi2 (and c1 = c2 = vi2 + ϵ). In this case, loss is

max
{
bi1, (vi2 − bi2)+

}
.

Case 3: two units. When the bidder wins two units, they set the market-clearing price.

In this case, bids are most suboptimal when the bidder could have reduced bids to (almost)

zero without losing any units; then loss is

[(vi1 − 0) + (vi2 − 0)]− [(vi1 − bi2) + (vi2 − bi2)] = 2bi2.

Maximal loss is then

max
{
(vi1 − bi1) + (vi2 − bi1)+ , bi1, 2bi2, vi2 − bi2

}
.

Due to the different signs, maximal loss is minimized by equalizing at least some of the

conditional losses; this contrasts the pay-as-bid auction, in which maximal loss is minimized

by equalizing all of the conditional losses. Pairwise equalization of maximum loss gives a

minimax-loss bid vector,

bLAB
i1 =

1
3
(vi1 + vi2) if vi1 ≤ 2vi2,

1
2
vi1 otherwise;

and bLAB
i2 =

vi2
3
.
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The first bid can be found by equalizing the underbidding regret conditional on losing the

auction vi1−bi1+(vi2−bi1)+ with the overbidding regret conditional on winning one unit bi1.

The second bid can be found by equalizing the underbidding regret conditional on winning

one unit vi2 − bi2 and the overbidding regret conditional on winning two units 2bi2.

While minimax-loss bids must minimize conditional regret for some unit, this will not

in general determine the minimax-loss bid for all units. With demand for two units, worst-

case loss minimization uniquely determines the bid for the first unit, but the bid for the

second unit need only lie within the bounds vi2 − LLAB ≤ bi2 ≤ LLAB/2, where LLAB = bi1

is minimax loss in the uniform-price auction. Note the difference to the FRB auction where

the last bid is uniquely determined by global regret minimization and the first bid from

local regret minimization. As in the FRB uniform-price auction, we view the selection that

optimizes the entire bidding function based on “local” worst cases natural.
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