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ON THE EXISTENCE OF PURE STRATEGY MONOTONE
EQUILIBRIA IN ASYMMETRIC FIRST-PRICE AUCTIONS

BY PHILIP J. RENY AND SHMUEL ZAMIR!

We establish the existence of pure strategy equilibria in monotone bidding functions
in first-price auctions with asymmetric bidders, interdependent values, and affiliated
one-dimensional signals. By extending a monotonicity result due to Milgrom and Weber
(1982), we show that single crossing can fail only when ties occur at winning bids or
when bids are individually irrational. We avoid these problems by considering limits of
ever finer finite bid sets such that no two bidders have a common serious bid, and by
recalling that single crossing is needed only at individually rational bids. Two examples
suggest that our results cannot be extended to multidimensional signals or to second-
price auctions.
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1. INTRODUCTION

THERE IS BY NOW a large literature on first-price auctions. While initial efforts
centered around the symmetric bidder case (e.g., Milgrom and Weber (1982)),
attention has begun to shift toward the even more challenging—and in prac-
tice often very relevant—case of asymmetric bidders. A key difference between
the two cases is that only the symmetric bidder setting admits closed-form ex-
pressions for equilibrium bid functions. Because of this, analysis of equilibrium
bidding behavior in asymmetric first-price auctions requires an implicit charac-
terization of equilibrium through first-order necessary conditions for optimal
bidding.? But if an equilibrium fails to exist, such an analysis is vacuous.

Our objective here is to provide conditions ensuring the existence of a pure-
strategy equilibrium in nondecreasing bid functions for asymmetric first-price
auctions with affiliated private information and interdependent values. As a
by-product, we therefore provide a foundation for the first-order approach to
analyzing equilibrium bidding behavior in such auctions.

Recent work on the question of equilibrium existence in first-price auctions
can be found in Athey (2001), Bresky (1999), Jackson and Swinkels (2003),
Lebrun (1996, 1999), Lizzeri and Persico (2000), Maskin and Riley (2000), and
Reny (1999).% But there appears to be a common difficulty. The above papers

'We are grateful to four referees for very helpful comments and suggestions and to the editor,
whose synthesis of the referees’ remarks and whose insightful questions led us to develop and in-
clude substantive new material. We also thank Eric Maskin for carefully reading several previous
drafts and providing detailed comments leading to significant expositional improvements. Reny
gratefully acknowledges financial support from the National Science Foundation (SES-9905599
and SES-0214421).

2See, for example, Bajari (1997).

3For conditions ensuring uniqueness in two-bidder settings, see Lizzeri and Persico (2000),
Maskin and Riley (1996), and Rodriguez (2000). Under more restrictive conditions, Maskin and
Riley (1996) obtain some uniqueness results for more than two bidders. See also Bajari (1997)
and Lebrun (1999).
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restrict attention either to two bidders, symmetric bidders, independent sig-
nals, private values, or common values. That is, the most general case involving
three or more asymmetric bidders with affiliated signals and interdependent
values is not covered. The reason for this is that standard proof techniques rely
on the following single-crossing condition (SCC) exploited with great ingenuity
in Athey (2001):

If the others employ nondecreasing bid functions and one’s payoff from a high bid is no smaller

than that from a lower bid, then the high bid remains as good as the lower one when one’s signal
f 4

rises.

However, even when bidders’ signals are affiliated, SCC can fail (see Sec-
tion 3) unless there is but a single other bidder (as in the two-bidder case),
or all signals are symmetric and bidders employ the same bidding function (as
in the symmetric case), or signals are independent, or values are either purely
private or purely common. It is for this reason that a general result is not yet
at hand.

While our main contribution is the existence result, there are two other con-
tributions of note. One of these is our characterization of the precisely two
ways that SCC can fail for a bidder. The first failure occurs when the two bids
being compared are both individually irrational, each yielding the bidder a neg-
ative expected payoff. The second failure occurs when one of the two bids ties
for the winning bid with positive probability.

A second contribution is a new method for establishing single-crossing when
these two potential failures are ruled out. The new method is based upon an
extension of an important result due to Milgrom and Weber (1982) for nonde-
creasing functions; the extension applies to a class of functions that need not be
nondecreasing. Using the new method, we establish the following individually
rational tieless single-crossing condition (IRT-SCC) for first-price auctions:

If the others employ nondecreasing bid functions and one’s payoff from a high bid is nonneg-
ative and no smaller than that from a lower bid, then the high bid remains as good as the
lower one when one’s signal rises so long as neither bid ties for the winning bid with positive
probability.?

Once this result is in hand, it is possible to adapt Athey’s (2001) finite-
action proof techniques to establish the existence of a pure-strategy monotone
equilibrium in our first-price auction setting when each bidder is restricted to
choose a bid from a finite set, but where the only common bid for distinct
bidders is nonserious. The proof is completed by showing that the limit of
any sequence of such equilibria, as the bidders’ finite grids become dense in
their unrestricted bid sets, is a pure monotone equilibrium of the model with

“This is only “half” of the condition. The other half is obtained by reversing the roles of
“high(er)” and “low(er),” and replacing “rises” with “falls.” See Section 2 for a formal defini-
tion.

5Once again, this is only half of the condition and the other half is obtained as before. See
Section 2 for a formal definition.
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unrestricted bids.® While employing such a limit argument is not novel, the
combination of interdependent values and affiliated private information ren-
ders a particular property of the uniform tie-breaking rule critical to this part
of the argument. By identifying this property, this portion of our proof may
also be of some value.

The remainder of the paper is organized as follows. Section 2 describes the
class of first-price auctions covered here, provides the assumptions we main-
tain throughout, and contains our main result. This section also provides a
discussion of Athey’s (2001) single crossing condition (SCC) and introduces
our individually rational tieless single crossing condition (IRT-SCC). Section 3
provides examples of the two ways Athey’s (2001) single crossing condition
can fail. Section 4 provides both a sketch of the proof of IRT-SCC as well as
our extension of Milgrom and Weber’s (1982) monotonicity theorem, upon
which the proof is based. Section 5 provides a private value example suggest-
ing that one-dimensionality of the bidders’ signals is essential for the existence
of monotone pure-strategy equilibria in the class of first-price auctions stud-
ied here, and Section 6 shows that our existence result for first-price auctions
cannot be extended to second-price auctions. All proofs are contained in the
Appendix.

2. THE MODEL AND MAIN RESULT

Consider the following first-price auction game. There is a single object for
sale and N > 2 bidders. Each bidder i receives a private signal s; € [0, 1]. The
joint density of the bidders’ signals is f:[0, 1]¥ — R,. After receiving their
signals, each bidder i submits a sealed bid from B; = {/} U [r;, c0) C R, where
[ < r; for all i. Either [ alone or both / and r; may be negative. The bidder i
submitting the highest bid greater than / wins the object, with ties broken ran-
domly and uniformly.” Hence, r; is bidder i’s reserve price and /, being a bid
that always loses, corresponds to a decision not to participate. For example,
the case of a common reserve price of zero corresponds to ; = 0 for all i and
[ < 0. We shall call bids in [r;, co) serious bids, and so [ is the only nonserious
bid.

If the vector of signals is s = (sy, ..., sy) and bidder i wins the object with a
bid of b;, then bidder i’s payoff is given by u;(b;, s). All other bidders receive

®Jackson and Swinkels (2003) employ Jackson, Swinkels, Simon, and Zame (2002) to establish
the existence of a mixed-strategy equilibrium in a large class of private-value auctions. Applying
Jackson et al. (2002) in our setting yields the existence of a mixed-strategy equilibrium with an
endogenous tie-breaking rule. This equilibrium need not be pure, nondecreasing, or an equilibrium
under the standard tie-breaking rule. Consequently, this route does not appear to be fruitful for
our purposes.

7Any tie-breaking rule with the property that a high bidder’s probability of winning is non-
increasing in the others’ bids will do. In particular, the probability of winning need not be log-
supermodular in the vector of bids as in Athey (2001).
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a payoff of zero. This specification allows for a variety of attitudes toward risk,
as well as a variety of payment rules.
We shall maintain the following assumptions. For all biddersi =1, ..., N:

ASSUMPTION A.1: (i) u;:[r;,00) x [0,1]Y — R is measurable, u;(b;,s) is
bounded in s € [0, 1JN foreach b; > r; and continuous in b; f~0r each s.

(ii) There exists b > r; such that u;(b;, s) <0 forall b; > b and all s € [0, 1]V

(iii) For every b; > r;, u;(b;, s) is nondecreasing in s_; and strictly increasing
in s;. _ _

(iv) wui(b;, s) — u;(b;, s) is nondecreasing in s whenever b; > b, > r;.

ASSUMPTION A.2: (i) f(s) is measurable and strictly positive on [0, 1]~.
(i) f(svS)f(sAns)=f(s)f(s) forall s,s €[0,11, where v and A denote
component-wise maximum and minimum, respectively.

REMARK 1: This model does not cover settings in which bidders must first
commit to participate before receiving their signals and then submit bids at or
above their reserve price after receiving their signals. While such prior com-
mitment is unusual in practice, our results hold even in this case so long as
each bidder i has a feasible bid guaranteeing a nonnegative payoff conditional
on winning (e.g., if u;(r;, s) > 0 for all s).

REMARK 2: According to Assumption A.1(iii), it is not necessary that
u;(b;, s) decrease in b;, only that it is eventually negative for large enough b;.
Thus, while we require the winner to be the highest bidder, we do not require
the winner to pay his bid, nor even an amount that is an increasing function of
his bid. It is important, however, that the winner’s payment depend only upon
his own bid.

REMARK 3: Note that Assumption A.1(iv) is satisfied automatically when
bidder i is risk neutral and the winner must pay his bid because in this case
u;(b;, s) = w;(s) — b; and so the difference expressed in A.1(iv) is constant in s.
More generally, if u;(b;, s) = U;(w;(s) — b;), then A.1(iv) holds when w;(s) is
nondecreasing in s and U/ <0 (i.e., bidder i is risk averse).

REMARK 4: Assumption A.2(i) implies that, given any s;, the support of i’s
conditional distribution on the others’ signals is [0, 1]V, A.2(ii) requires the
bidders’ signals to be affiliated (see Milgrom and Weber (1982)).

Given a vector of bids b = (by, ..., by) € x;B;, let v;(b, s) denote bidder i’s
expected payoff when the vector of signals is s. That is,

1 ) .
'Ul'(b,s): Eui(bias) lf m:#{]:b/’Zb[:manbk>l}21’

0 otherwise.
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Note that this specification implies that a lone bid equal to one’s reserve price
is a winning bid.

Throughout, the upper case letter S; will denote bidder i’s signal as a random
variable while the lower case letter s; will denote its realization. A pure strategy
for bidder i is a measurable (bid) function b;:[0, 1] — B;. Given a vector of
pure strategies b= (by, ..., by), let V;(b) denote bidder i’s (ex-ante) expected
payoff in the auction. That is,

Vi(b) = E[v;(b(S), $)],

where b(S) denotes the random vector (b;(S;), ..., by (Sy)) and the expecta-
tion is taken with respect to f. It will also be convenient to define bidder i’s
interim payoff. Accordingly, let V;(b;, b_;|s;) denote bidder i’s expected payoff
conditional on his signal s; and given that he bids b; and the others employ the
strategies b_;. That is,

Vi(bi, b_jls;) = E[v;(b;, b_;(S_), 5:, S_)|Si = Si]~8

A pure-strategy equilibrium is an N-tuple of pure strategies b* = (b}, ..., b%)
such that for all bidders i, V;(b*) > V;(b;,b*,) for all pure strategies b;; or
equivalently, for every i and a.e. s;, Vi(bi(s;), b* |s;) > Vi(b;, b*,|s;) for every
b,‘ S B,‘.

Our interest lies in establishing, for any first-price auction game, the ex-
istence of a pure-strategy equilibrium in which each bidder’s bid function is
nondecreasing in his signal. We shall refer to this as a monotone pure-strategy
equilibrium. This brings us to our main result.

THEOREM 2.1: All first-price auction games satisfying Assumptions A.1 and A.2
possess a monotone pure-strategy equilibrium.

REMARK 5: Suppose that for each pair of distinct bidders, i and j, the
strictly increasing function ¢/(-) maps R onto R, and ¢} and ¢; are mutual
inverses. With obvious modifications, the proof of Theorem 2.1 is valid un-
der the more general rule that any serious bid b; by i is among the highest
if b; > max;,; qﬁj.(b ;) with ties broken uniformly when there is more than one
high bidder. Hence, Theorem 2.1 extends, for example, to settings in which the
auction rules favor a subset of bidders by increasing their effective bids against
those outside the subset.

The proof of Theorem 2.1 is in the Appendix and consists of two main steps.
The first step establishes that a monotone equilibrium exists when bidders are

8All statements involving conditional probabilities are made with respect to the following
version of the conditional density: f(s_;|s;) = f(s)/fm)”,v,1 f(si,s_;)ds_;, which, by Assump-
tion A.2(i), is well defined.
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restricted to finite sets of bids with only the nonserious bid / in common, while
the second step shows that the limit of such equilibria, as each bidder i’s set of
permissible bids becomes dense in B, is an equilibrium when, for each bidder i,
any bid in B; is feasible.

The novelty of our approach lies in the first step, where standard techniques
have up to now failed. For example, it would be straightforward to establish the
existence of a monotone equilibrium with finite bid sets if one could establish
the single-crossing condition employed in Athey (2001). One could then simply
appeal directly to Athey’s Theorem 1.

In the context of our first-price auction, Athey’s (2001) single-crossing con-
dition is as follows. For any bidder i, any feasible bids b; and b, and any non-
decreasing bid functions b; for all bidders j # i, the following must hold:

SCC: If Vi(D,, b_i|s;) = Vi(b;, b_i|s;), then this inequality is maintained when
s; rises if b, > b;, while it is maintained when s; falls if b’ < b;.

Unfortunately, Athey’s (2001) result cannot be applied because, for arbitrary
finite or infinite bid sets, SCC can fail in two ways (see Section 3). First, SCC
can fail when there are ties at winning bids and this is why we must approximate
the bidders’ bid sets with finite sets whose only common bid is the losing bid, /.

Second, SCC can fail if a bidder employs an individually irrational bid, that
is, a bid yielding a negative expected payoff against the others’ strategies. But
this failure of SCC does not pose a problem for us because the heart of Athey’s
(2001) proof technique nonetheless applies. To see this, recall that Athey em-
ploys SCC only to establish that when the others use monotone strategies,
a bidder’s best-reply correspondence, as a function of his signal, is increas-
ing in the strong set order.’'° Because our finite bid sets include the losing
bid /, best replies are necessarily individually rational. Consequently, strong
set-order monotonicity can be established as in Athey (2001) so long as SCC
holds for bids that are best replies. That is, the failure of SCC for individually
irrational bids is immaterial for establishing strong set-order monotonicity of
the best-reply correspondence whenever each bidder has a bid that guarantees
a nonnegative payoff.

Consequently, the existence of a monotone pure-strategy equilibrium can be
established in a first-price auction with our particular finite-bid set approxima-
tion if SCC can be established whenever ties at winning bids are absent and the

That is, in this one-dimensional setting, if a high bid is best at a low signal and a low bid is best
at a high signal, then both bids are best at both signals. (Milgrom and Shannon (1994) introduced
the strong set order into the economics literature and, using it, established a number of important
comparative statics results.)

0Athey’s (2001) convexity results then apply and existence follows, as Athey shows, from
Kakutani’s theorem.
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two relevant bids are best replies. We in fact establish a single-crossing condi-
tion that is stronger than this restricted form of SCC (but of course weaker
than SCC itself), which, a fortiori, suffices for our purposes.

The following individually rational tieless single-crossing condition
(IRT-SCC) requires that, in addition to the absence of ties at winning bids,
one of the two relevant bids be individually rational, but neither bid need be a
best reply.

DEFINITION 2.2: A first-price auction satisfies IRI-SCC if for each bidder i,
all pairs of bids b;, b! € B;, and all nondecreasing bid functions b;:[0, 1] — B;
of the other bidders such that Pr(/ < max;,; b;(S;) = b, or b;) =0, the following
condition is satisfied:

IfV,(b:,b_;ls;) > 0and V;(b!, b_;|s;) > Vi(b;, b_;|s;), then the second inequal-
ity is maintained when s; rises if b; > b;, while it is maintained when s; falls if
b; < b,‘.

The main contribution leading to the proof of Theorem 2.1 is the following
proposition. Its proof can be found in the Appendix.

PROPOSITION 2.3: Under Assumptions A.1 and A.2, a first-price auction sat-
isfies IRT-SCC.

REMARK 6: It can in fact be shown that, given individual rationality, the
single-crossing inequality is maintained even if ties occur at the higher of the
two bids b and b;. It is only ties at the lower of the two bids that cause
single-crossing to fail. This tighter characterization might prove useful in
understanding when all equilibria must be monotone. (See McAdams (2003)
for some work in this direction.)

We next illustrate the two ways that SCC can fail.

3. THE TWO FAILURES OF SINGLE-CROSSING

In each of the two examples below, there are three bidders, each with a zero
reserve price, and the joint distribution of their signals is as follows.

Bidders i = 1, 2 have signals, s;, that are i.i.d. uniform on [0, 1]. These are
drawn first. Bidder 3’s signal, s3, is drawn from [0, 1] conditional on 1’s signal
according to the density

1 if 5, <1/2,
g(ss1s1)=12/3 if s;>1/2ands; <1/2,
4/3 if S1>1/2and53>1/2.

Thus, 3’s signal is uniform on [0, 1] if s; < 1/2. If 5; > 1/2, then 3’s signal is
twice as likely to be above 1/2 as below 1/2, but is otherwise uniformly distrib-
uted on each of the two halves of the interval [0, 1]. So defined, the bidders’
signals are affiliated.
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S3A S3A
1 1
Vi Vv, Yi Vv,
[1/4] [1/4] [1/3] [1/3]
12 1/2
Vo v, Vo V,
[1/4] [1/4] [1/6] [1/6]
0 12 1S 0 12 15
a. 1’s payoff distribution b. 1’s payoff distribution
with a low signal with a high signal

FIGURE 1.—1’s payoff distribution.

The examples will be constructed so that SCC fails for bidder 1. Conse-
quently, bidders 2 and 3 can, for example, be given private values. In each
example, Bidder 1’s utility will take the quasilinear form u;(b, s) = w;(s) — b,
where, for vy < v; < v, <vs,

U3 if (Sz,Sg,) €

NI= =

[
wi (1, $2, 83) = vy if (52, 83) € %
[

v, if (s, 83) €
vy if (55, 83) €0,

Figure 1 illustrates both the distribution of the others’ signals conditional on 1’s
signal, and bidder 1’s value for the good, w; (s, 52, 53), as a function of the other
bidders’ signals.' In each panel, the numbers in square brackets are the prob-
abilities of each of the four regions conditional on 1’s signal. In panel (a) 1’s
signal is low (i.e., 1/2 or less), while in panel (b) it is high (i.e., above 1/2). In
both panels, the joint density of s, and s; is uniform within each region.

The two failures of SCC result from two distinct specifications of the values
Vg, V1, Uz, and vs.

Note that w; (s) is nondecreasing in s, but, contrary to A.1, it is independent of s;. This is for
simplicity only. Adding es; to w;(s), for ¢ > 0 small enough, renders 1’s utility strictly increasing
in his signal and maintains the failure of SCC in both examples.
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3.1. The First Failure: Individually Irrational Bids

Consider the following values:
U():l, 'U1:2, U2:8, 'U3:9.

Suppose also that bidders 2 and 3 each employ a strictly increasing bidding
function that specifies a bid of 5 at the signal 1/2 and a bid of 6 at the signal 1.
Now consider two signals, s, and §;, for bidder 1 such that s, < 1/2 < §;. Given
the bid functions of bidders 2 and 3, bidder 1 is indifferent between bidding
5 and 6 when his signal is s,, but considers bidding 5 as strictly better than
bidding 6 when 1’s signal increases to §; (see below). This of course violates
SCC.

Furthermore, both bids, 5 and 6, are individually irrational for bidder 1
whether his signal is high or low. As we have already indicated, without ties
in bids this is the only way that single-crossing can fail. The requisite calcula-
tions follow:

1

Vi(by =6,b,,bss;) = Z(9+8+2+1) —6=-1,
1

Vi(by =5,by,bss;) = Z(l -5 =-1,

1 1 1 1 5
Vi(by =6,b,, b3|5)) = (—9+ 68+ =2+ —1) —6=——,

3 3 6 6
_ 1 2
I/l(bl :5’b27b3|s1) = 6(1 —5) = —g,

3.2. The Second Failure: Ties at Winning Bids

Consider now the following values:
Vg = 0, V= O, V) = 336, V3 = 336.

Suppose this time that bidders 2 and 3 bid zero when their signal is 1/2 or
lower and bid 120 when their signal is above 1/2. Consequently, bidders 2 and 3
bid zero and 120 with positive probability each.

Consider again two signals, s, and sy, for bidder 1 such that s, < 1/2 <5;.
Direct calculations now establish that, given the bidding functions of bidders
2 and 3, bidder 1’s unique best reply among the bids {0, 120, 167} is 167 when
his signal is s, but his unique best reply when his signal increases to §, is 120.
Thus SCC is again violated. However, this time the chosen bids, 120 and 167,
are individually rational. Note, however, that 120 ties as a winning bid with
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positive probability. The relevant calculations are as follows:
1
Vi(by =167, by, bsls,) = Z(O +0+336+336) —167=1,

1 1/1
Vi(bi =120, by, bals,) = 7(0—120) + Z(§>(336 ~120)

1/1
+ Z(E)(O —120)

1/1
—| = —12 =
+ 4<3)(336 0)=0,

1/1
Vi(by=0,b,, bsls)) = Z(g)(o -0)=0,

1 1
Vi(b; =167, by, bs5;) = 8336+ 5336 —-167=1,

1 1/1

1/1
+ g(z)(O —120)

1/1
= 5)(336-120)=2
()02

_ 1/1
Vi(by =0,b,, bsls;) = 8(5)(0 —-0)=0.

4. IRT:SCC: PROOF SKETCH

We now provide a sketch of the proof of IRT-SCC. For simplicity, suppose
there are three bidders, 1, 2, and 3, each with a reserve price of zero. Consider
two bids, b; > b, > 0 for bidder 1, and suppose that bidders 2 and 3 each em-
ploy a strictly increasing bidding function with the property that bidder j =2, 3
bids below b, when s; < s and bids between b, and b, when s; € (8,5 5)- So,
consulting Figure 2, bidder 1 wins with a bid of b, when (s,, s3) is in any one of
the cells A, and wins with a bid of b, when (s, s3) is in cell 4,."> Assume that
each A4, has positive probability conditional on any signal for bidder 1.

Consider two signals, s, < 5y, for bidder 1. Our objective is to illustrate the
role played by individual rationality and the absence of ties in obtaining single
crossing for bidder 1 with respect to his bids, b, < b, and his signals, s, < 5.

2Ties occur with probability zero given the strictly increasing functions of bidders 2 and 3.
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S
A
§3
u,(b;,5) u, (b, 5)
4, A,
S3—— -
u,(b,,s)—u,(b,,s) u,(b,s)
4, A,
—>
0 Sy S, 5

FIGURE 2.—Payoff difference from b; = by vs. by = b,.

Single crossing requires, in part, that if b, is at least as good as b, when 1’s
signal is s,, then the same is true when his signal increases to ;.

Note that ties have already been ruled out by supposing that bidders 2 and 3
employ strictly increasing bidding functions. Indeed, this has been incorpo-
rated into Figure 2; there are no cells in which bidder 1 wins with probability
other than zero or one. Consequently, single crossing cannot fail because of
ties. To ensure that single crossing cannot fail because bids are individually
irrational, it is enough to suppose that bidder 1’s low bid, b,, is individually
rational at his high signal, s;.

We wish now to demonstrate that single crossing holds for bidder 1. Consult
Figure 2. The ex-post difference in 1’s payoff from bidding b; versus b,, which
we shall denote by A(s), is u;(by, s) — ui(b,, s) when the signals of bidders

2 and 3 are in cell Ay, while it is simply u, (b,, s) in the other three cells because
b, loses in those cells.

Let A denote the union of the four cells, i.e., the event that b, is a winning
bid. Consequently, when his signal is s;, the difference in 1’s payoff from bid-
ding b, versus b, is Pr(Als))E(A(S)| A, s;). Single crossing requires that

Pr(Als)E(A(S)|A4,5)>0 = Pr(A[5)E(A(S)|A,5)>0.

But because b; wins with positive probability regardless of 1’s signal, both
Pr(AJs,) and Pr(Als,) are positive. Hence, single crossing holds if

(41)  E(A(S)|4,s) = E(AS)|4, 51).

Consequently, we may restrict attention to signals of bidders 2 and 3 that lie
in A.

Now, because A(s) is nondecreasing in s;, if it were also nondecreasing in
(52, 83) on A, then (4.1) would follow from the following monotonicity result
due to Milgrom and Weber (1982, Theorem 5): If X, ..., X, are affiliated
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and ¢(xy,...,x,) is a nondecreasing real-valued function, then the expecta-
tion of ¢, conditional on any number of events of the form X, € [ay, b;], is
nondecreasing in all the a, and b, where a, = b, is permitted.

However, A(s) can fail to be nondecreasing in (s, s3). For example, if at
some point on the border between A4, and A4,, u;(b,, s) <0, then A(s) strictly
decreases as (s, 53) increases through that point from just below the border to
just above it. Hence, Milgrom and Weber’s result does not apply.

Fortunately, an extension of their result that requires only an average form
of monotonicity on the cells 4, does apply (see Lemma A.1 in the Appendix).
In the present example, this average form of monotonicity is that for k =1, 2,

(4.2) E(ui (b1, 8) — ui(by, $)| Ao, 51)
< E(ui(b1, )| A, 51) < E(ui(by, 8)| 43, 51).

Hence, to establish (4.1) we need only show that (4.2) holds.

The inequality on the right in (4.2) follows from Milgrom and Weber’s
monotonicity result. To obtain the inequality on the left we use the individ-
ual rationality of the bid b, at 5;. Note that a bid of b, wins precisely when
the others’ signals are in region Ay, and this occurs with positive probability.
Hence, individual rationality implies

(4.3) E(”l(él » $)[ Ao, 51) > 0.
The inequality on the left in (4.2) then follows since, for k =1, 2,

E(ui(by, $)| Ay, 51) = E(ui (b1, S)| Ao, 51)
> E(ui(by, S) — ui(by, )| Ao, 51),

where the first inequality follows from Milgrom and Weber’s monotonicity re-
sult and the second follows from (4.3). Hence, (4.1), and therefore also single
crossing, holds.

5. MULTI-DIMENSIONAL SIGNALS: A PRIVATE VALUE COUNTEREXAMPLE

We now provide a private value example suggesting that Theorem 2.1 fails if
the bidders’ signals are not one-dimensional. The example possesses a unique
equilibrium, which is pure and nonmonotone.

The example is only suggestive because, while it satisfies the multi-
dimensional signal analogue of Assumption A.1, it involves several extreme
distributional specifications. For example, some signals are discrete random
variables rather than continuous ones, and some signals are perfectly corre-
lated with others. Consequently, the joint signal distribution has no density
function and so, formally, Assumption A.2 fails. However, the signals in our
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example are affiliated, and we conjecture that no smoothed nearby example
satisfying A.1 and A.2 will possess a monotone pure-strategy equilibrium ei-
ther.”® But this remains an open question.

There are three bidders, 1, 2, and 3, each with a zero reserve price, and so
the losing bid / is strictly less than zero. All bidders observe a public signal, Y,
which affects only the values of bidders 2 and 3. In addition, bidder 1 receives
a private signal, X, which determines his value, and bidders 2 and 3 observe a
common signal Z, which affects their value.

One interpretation is that these are three firms bidding on a contract to up-
grade their computer systems to enhance production. Firm 1 is a monopolist
in market A and —X is a signal about the cost of his inputs. Firms 2 and 3
compete in market B and Y is a public signal about demand in market B, while
—Z is a signal about the common cost of inputs to firms 2 and 3 in market B.
Another interpretation, suggested by a referee, focuses on information leak-
age. Specifically, bidder 1 receives signal X, bidder 2 receives Y, and bidder 3
receives Z. In addition, it is common knowledge that bidder 1 spies on 2 and
finds out Y, bidder 2 spies on 3 and finds out Z, and bidder 3 spies on 2 and
finds out Y. This interpretation is particularly interesting because bidders will
typically have an incentive to find out their opponents’ signals, if only to better
predict their bids. Hence, whether the opportunity to find out others’ signals is
present can be an important issue.

So, altogether, bidder 1 receives the two-dimensional signal S} = (X, Y),
while bidders 2 and 3 each receive the common two-dimensional signal S, =
S5 = (Y, Z). Let us suppose that X and Y are i.i.d. random variables taking on
the values 0 and 1 with probability 1/2 each, and Z is independently and uni-
formly distributed on [0, 1]U[2, 3]. Consequently, the six real random variables
(51,8, 8)=(X,Y,Y, Z,Y, 7Z) are affiliated.

The bidders have private values and quasilinear utilities. Bidder 1’s value is

vi(x, y) = 6x,
while bidders 2 and 3 have identical values v,(y, z) = v3(y, z) = v(y, z), where

_ |7 ity=1,z€[2,3],
v(y, 2) = {z otherwise.

PROPOSITION 5.1: The above first-price auction example possesses a unique
equilibrium outcome. Every equilibrium is (up to ex ante probability zero events)
pure, nonmonotone, and of the following form: For y=0, 1l and a.e. z, b,(0, y) €
{{,0}, b:(1,0) =3, bi(1,1) =1; bj(y, z) = v(y, 2), j = 2,3. Thus, the only
nonuniqueness concerns bidder 1’s strategy and whether, when X =0, he bids
[ or 0, both of which lose with probability one.

13 Arbitrarily nearby examples satisfying A.1 and A.2 exist.
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The proof can be found in Reny and Zamir (2002), but the argument is
straightforward. Because bidders 2 and 3 have identical values, and because
their signals are also identical, their identical values are common knowledge
between them. Consequently, a standard Bertrand competition argument es-
tablishes that bidders 2 and 3 must each bid their value in equilibrium. Hence,
bidders 2 and 3 employ monotone pure strategies. It remains only to find bid-
der 1’s best reply.

When 1’s signal S; = (x, y) = (0, y), a best reply for bidder 1 requires bid-
ding so that he loses with probability one, because his value is v; = 6x = 0.
Hence, he must bid either / or 0. The interesting case is when x = 1.

When S; = (x,y) = (1,0), bidder 1’s value is v; = 6 and he knows that
Y = 0. Consequently, he knows that the common bid of bidders 2 and 3 is
v(0, Z) = Z, which is uniformly distributed on [0, 1]U [2, 3], and a straightfor-
ward calculation establishes that 1’s unique best reply is to bid 3.

However, when S; = (x, y) = (1, 1), bidder 1’s value is again v; = 6, but he
now knows that Y = 1. Consequently, he knows that bidders 2 and 3 each bid
v(1, Z) =7if Z € [2, 3] while they each bid v(1, Z) = Z if Z € [0, 1]. Clearly, it
would be suboptimal for bidder 1 to bid 7 or more since his value is only 6. Con-
sequently, bidder 1 will bid less than 7 and so can condition on the event that
2 and 3 bid less than 7 as well. But, conditional on bidding less than 7, bidders
2 and 3 submit a common bid that is uniformly distributed on [0, 1]. Another
straightforward calculation establishes that bidder 1’s unique best reply now is
to bid 1.

Hence, every best reply for bidder 1 is nonmonotone, with his bid falling
from 3 to 1 when his signal increases from (1, 0) to (1, 1).

One reason for the failure of monotonicity here is the failure of affiliation
to be inherited by monotone functions of multi-dimensional affiliated random
variables. Specifically, even though the random variables Y and Z are inde-
pendent and hence affiliated, the random variables Y and v(Y, Z) are not
affiliated, despite the fact that v(Y, Z) is nondecreasing. To see this, observe
that

Pro(Y,2)e231Y=0) P, 2) €23V =1)
Pru(Y, Z) [0, 111Y =0)  Pr(Y,Z)e[0, ][Y =1)°

Consequently, in the example, one of the dimensions of bidder 1’s signal, Y,
is not affiliated with the equilibrium bids of the other bidders.

6. SECOND-PRICE AUCTIONS: A COUNTEREXAMPLE

Returning to the one-dimensional signal setting, one might wonder whether
second-price auctions admit monotone pure-strategy equilibria under As-
sumptions A.1 and A.2."* The answer is trivially “yes” if dominated strategies

“We thank a referee for asking precisely this question.
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are permitted and if for some bidder i, E(u;(r;, S)|s;) > 0 for all s; € [0, 1]. In
this case there is always an equilibrium in which, regardless of his signal, bid-
der i bids b > r; such that for all j # i, u,-(l;, s) < 0 for all s, and all others
drop out by bidding /. Hence, the substantive question is: Under Assumptions
A.1 and A.2, does a second-price auction necessarily possess a monotone pure-
strategy equilibrium in undominated strategies? The answer is “no,” and we now
provide an example. For the sake of brevity, the signals in the example are dis-
crete and some are perfectly correlated. However, the example can easily be
smoothed so that it satisfies both A.1 and A.2.

There are three bidders. Bidder i receives signal s;. Bidder 1’s value is
v; = 51 + 8, while bidders 2 and 3 have private values; v, = s, and v; = s5. Each
bidder receives either a high or a low signal. Specifically, s; € {1, 2}, s, € {0, 4},
and s; € {0, 3}. Bidders 1 and 3 have perfectly correlated signals, both being
low with probability 1/2 or both being high with probability 1/2. Bidder 2’s sig-
nal is independent of the others’, being low with probability p and high with
probability 1 — p, where p € (2/3, 1). The bidders’ signals are therefore affili-
ated.

Because bidders 2 and 3 have private values, their only undominated strat-
egy is to bid their value. Bidders 2 and 3 therefore each employ a pure
nondecreasing bid function. It remains only to compute an undominated best
reply for bidder 1.

When s; = 1, bidder 1 knows that b;(s;) = s; = 0. Since 1’s value is v; =
1+ s,, his value is 1 if b,y(s,) = s, = 0, while it is 5 if b,(s,) = s, = 4. Conse-
quently, 1’s value is always strictly above the high bid of the others and so it is
optimal for him to bid so that he wins with probability one. Because p < 1, this
requires a bid above 4. However, when s; = 1 his value is never more than 5,
and so in any undominated equilibrium we must have b;(1) € (4, 5].

When s; = 2, bidder 1 knows that bs(s;) = s;3 = 3. Consequently, a bid
above 4 still wins with probability one, but bidder 1 now pays 3 when b, (s;) =
s, =0 and v; =2, and pays 4 when b,(s;) = s, = 4 and v; = 6. Hence, a bid
above 4 yields bidder 1 a payoff of p(2—3) + (1 — p)(6 —4), which is negative
because p > 2/3. Similarly, any bid weakly between 3 and 4 yields a negative
payoff. Consequently, we must have b;(2) < 3. Hence, an undominated pure-
strategy equilibrium exists, but in no such equilibrium is bidder 1’s strategy
nondecreasing.
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APPENDIX

We begin with our extension of Theorem 5 of Milgrom and Weber (1982). In R¥, call the
product of k real intervals—each of which can be closed, open or half-open—a cell. If C and C’
are cells in R, then we will write C < C’ if the lower (upper) endpoint of each interval in the
product defining C is no greater than the lower (upper) endpoint of the corresponding interval
in the product defining C’.°

A function 4 :[0, 1]¥ — R is cellwise nondecreasing with respect to the density g:[0, 11* — R, if
there is a finite partition, {C’}, of [0, 1] into cells such that, (i) the restriction of / to each cell is
nondecreasing, and (ii) E,(h|C") < E,(h|C’) whenever C' < C/.

Evidently, by considering the partition consisting of the single cell [0, 1]¥, every nondecreasing
function on [0, 1]* is cellwise nondecreasing for every density. On the other hand, a function can
be cellwise nondecreasing with respect to a given density without being nondecreasing on its
domain. Our extension of Milgrom and Weber’s monotonicity result is as follows.

LEMMA A.1: Suppose that h:[0, 11" — R, that X, ..., X, Y1, ..., Y., are affiliated random
variables with joint strictly positive density g:[0, 11"t — R, ,, and that X > x are vectors in [0, 1]".
IfX=(X,...,X), Y=(1,...,Yy,), and:

(i) forevery y €0, 11", h(x,y) is nondecreasing in x on [0, 11", and

(ii) h(x,-) is cellwise nondecreasing w.r.t g(-|X = x) when x =X or x,

then E[h(X,Y)|X =x] < E[h(X,Y)|X =X].

PROOF: We provide the proof for the case in which A(x, ) is cellwise nondecreasing w.r.t
g(-|X = x), the other case being similar. Let {C’} denote the associated partition of [0, 1]".
Hence, the step function, ¢ : [0, 1] — R defined by ¢ (y) = E[h(X, Y)|X =X, Y e C']if y € C,
is nondecreasing. Therefore,

E[R(X,Y)|X =x]=) Pr(C'|X =x)E[h(X,Y)|X =x,Y €]

i

<Y Pr(C'|X = 0)E[h(X,Y)|X =%, Y eC']

=E[¢(Y)|X =x]
< E[¢(Y)|X =x]
=Y Pr(C'IX =X)E[h(X,Y)|X =%,Y € C]

i

= E[h(X, Y)|X =X],

where the two inequalities follow from Theorem 5 of Milgrom and Weber (1982), henceforth
MW. QE.D.

PROOF OF PROPOSITION 2.3: To establish IRT-SCC, fix l;i > b, and, for all j # i, fix non-
decreasing bid functions, b;, so that Pr(/ < max;.;b;(S;) = b; or b;,) = 0. In what follows, all
statements about i’s payoff, etc., correspond to these fixed bid functions of the others.

Clearly, if b; = b; or b;, then the probability that b, is among the highest serious bids is equal
to the probability that b; is the unique highest bid (and hence serious). Moreover, because f > 0
and the event that b; is uniquely highest depends only upon the others’ signals, this event (and

13S0, in R?, for example, (ai, b1] x a2, b2) < (d}, b)) x (a,, b,) if a; < a} and b; < b}, for
i=1,2.
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any other with this property) has positive probability if and only if it has positive probability
conditional on every s; € [0, 1]. These facts will be used repeatedly in what follows.
Let A denote the event that b; is a winning bid. That is,

A= {S_i € [0, 1]N_l :ma_xbj(sj) < 51}
J#

If b, wins with probability zero, then V;(b;, b_;|s;) = 0 for every s;. Consequently, IRI-SCC holds
because, by MW Theorem 5, E(u;(b;, S)|s;, A) is nondecreasing in s; whenever A has positive
probability. Consequently, we can assume that b; wins with positive probability. A fortiori, b; wins
with positive probability and so A4 has positive probability.

Partition A as follows. For every subset J of {1, ..., N}\ {i}, define

AJ)=AN{s_; €[0, 1IN 1 Vj#i,bi(s;) > b, iff je J).

Hence, ignoring ties, A(J) is the event that b, loses against precisely those bidders in J. Because
A(J) is contained in A4, b; wins against every j # i in each event A(J). Note that 4(¥), being
the event that b, loses against no one, is the event that b, wins the auction and so has positive
probability. ~

Because both b; and b, win with positive probability and tie the maximum of the others’ bids
with probability zero, IRT-SCC reduces to the following: For s; > s,,
(Al) E[ul(b,,S)—u,(bl,S)IAM)\A,Q,] >0 = E[ul(bl,S)—u,(b

=z Y

il A,5]=0
when E(u;(b;, S)| 4,5,) > 0, and
(A2) E[ui(bi, $) — ui(b;, )Ly A,5] <0 = E[(ui(b;, S) — ui(b;, )La| A, 5;] <0

when E[u;(b;, S)|A(9), 51> 0.
Now, by MW Theorem 5, E[u;(b;,S)|A,s;] > 0 implies E[u;(b;, S)|A4,5] > 0. Conse-
quently, if in addition E[u;(b;, S)I4@|A,5:] <0, then (A.1) holds simply because the second
difference is positive, being the difference between a nonnegative and a negative number.
Hence, it suffices to establish (A.1) and (A.2) when E[u;(b;, S)14@|A,5] > 0, or equiva-
lently, when E[u;(b;, S)|A(%),5;] > 0. We shall in fact show more than this, namely, that if
Elu;(b;, S)|A(#), 5] = 0, then
(A3) E[ui(b,-, S) — u,—(bi, S)IAM)\A,gi] < E[u,—(bi, S) — Lll(b

=z Zi

)Ll 4, 5]

To see this, let A;(s) = u;(b;, ) — u;(b;, s)I 49, and note that A;(s;, s_;) is nondecreasing in s;
on [0, 1]. Hence, by Lemma A.1, it suffices to show that A;(5;, -) : A — R is cellwise nondecreasing
with respect to f(s_;| A4, 5;). Consider the above finite partition, {4(J)}, of A4 into cells. We may
restrict attention to those subsets J such that 4(J) is nonempty.

If A(J") > A(J), then

Elui(bi, $)IAU"), 5,1 = Elui(bi, $)|AWJ), 5]
follows from MW Theorem 5. Furthermore, because every A(J) > A(%),

Elui(bi, $)IAU), 5] = Elui(bi, )L AWD), 51 = Eluy(bi, S) — ui(by, $)|A®), 51,
where the first inequality follows from MW Theorem 5, and the second follows because

Elu;(b;, S)|A(9), 5:]1 = 0. Hence, A;(5;, -) is cellwise nondecreasing. Q.E.D.

PROOF OF THEOREM 2.1: Part 1. In this part of the proof we consider a modified first-price
auction game. There are two modifications. First, we restrict the bidders to finite sets of bids.
Each finite set contains the losing bid, /, but no two sets have any serious bid in common. This
means that ties can only occur at bids of /. Second, we restrict the bidders’ strategies so that each
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bidder must bid / when his signal is in [0, &), where € € (0, 1) is fixed.!® Therefore, because the
joint density of signals is strictly positive on [0, 1]V, any serious bid submitted by a bidder wins
with strictly positive probability regardless of his signal. The import of this will be explained in
the second part of the proof. We now wish to show the following:

Under the two modifications above, a monotone pure-strategy equilibrium exists.

To establish this, it would suffice to verify the single-crossing condition (SCC) employed in
Athey (2001). We could then appeal to Athey’s Theorem 1. However, as we have seen, SCC
does not hold in our setting. Fortunately, Athey’s finite-action existence proof goes through if the
following, more permissive, best-reply single-crossing condition holds in our modified auction.

BR-SCC: If b} is a best reply for s; against b_;, and b; is feasible for s;, then the inequality
Vi(b;, b_jls;) = Vi(b;, b_;|s}) holds for all s; > s; if b} > b;, while it holds for all s; < s; if b; < b;.

Our modified auction will therefore possess a monotone pure-strategy equilibrium if BR-
SCC holds, which we now establish. Suppose that b; is a best reply for s; against the others’
monotone strategy b_;. Because the bids / and b; are feasible, we must have V;(b;, b_;|s;) >
max(Vi(b;, b_;|s;), Vi(l,b_|s;)) > 0. Hence, in addition to being as good as b;, b; is individu-
ally rational for i at s;. Also, because the only common bid available to distinct bidders is /,
Pr(l < max;;b;(S;) =b; or b;) =0. Hence, by Proposition 2.3, V;(b;, b_;|s;) > Vi(b;, b_;|s}) holds
for all s; > s; if b} > b;, while it holds for all s; <s; if b} < b;. This establishes BR-SCC for the
modified auction and so it possesses a monotone pure-strategy equilibrium.!’

Part 2. In this part of the proof, we consider a sequence of monotone equilibria of the modified
auctions from Part 1. For n =1, 2, ..., let G" denote the modified auction in which ¢ = 1/n and
bidder i’s finite set of bids is denoted by BY. Note then that / € B! for each n. Further, suppose
that B! 2 B/! and that |, B} is dense in B;. Let b" denote a monotone pure-strategy equilibrium
of G". By A.1(ii), for every i there exists b > r; such that u;(b,s) <0 for all b > b and all s €
[0, 1]V, Consequently, because all serious bids for i win with positive probability, and because
the bid / is available in G", each b} is bounded above by b; and of course b} is bounded below
by [. Hence, by Helley’s theorem, we may assume without loss that for every i, b’(s) — bi(s)
for a.e. s; € [0, 1], where each b; is nondecreasing on [0, 1]. We shall argue that b is a monotone
equilibrium of the first-price auction game.

The argument would be trivial were it not for the possibility of ties, which lead to discontinu-
ities in payoffs. There are two points at which ties must be carefully considered. The first arises
when considering a bidder i’s payoff from any bid against the limit strategies, B_i, of the others.
It must be shown that, given his signal, bidder i can either approximate arbitrarily well or im-
prove upon his payoff by employing a slightly higher bid that, with probability one, does not tie
the others’ bids. This is demonstrated in (A.5), a result that depends upon the tie-break property
that a high bidder’s probability of winning does not increase when additional bidders tie for the
winning bid.

Ties must also be handled carefully when considering the limit of a bidder’s payoff as the grid
of bids becomes finer and finer. While the a priori possibility of ties at the limit can render the
limiting payoff distinct from the payoff at the limit, the limiting payoff, it is shown, can always be
obtained by employing the limit strategies, b, together with some surrogate tie-breaking rule that
is a function of the vector of signals alone. Demonstrating that ties in fact occur with probability
zero under b requires establishing that, even against such surrogate tie-breaking rules, a bidder

16 Athey (2001) also employs this device.
"Note that our example of the second failure of SCC in Section 5 demonstrates that BR-SCC
fails if one allows the bidders’ finite bid sets to have serious bids in common.



ASYMMETRIC FIRST-PRICE AUCTIONS 1123

can approximate or improve upon his payoff by increasing his bid slightly. As before, the details
of the surrogate tie-breaking rule are critical for establishing this result.

Throughout the remainder of the proof it will be convenient to maintain two conventions
regarding the bid b = /. First, define u;(/, s) = 0 for all i and all s, and second, when b =/ define
b' | b tomean b’ = b, since [ is isolated.

Because [ € B, V;(b") > 0 for all i and n. Hence, for every i and a.e. s; such that f)i(s,-) >/ and

Pr(max;; f),-(Sj) <b;(s)ls:) > 0, the following holds for » large enough:

(Ad) 0 = E[u(0(s). S)ls. maxbi(S)) <b/(s,)|
= E[uib](s), $)lsi, maxb($) < bi(s;) +
J#i
— E[uihi(s,), )ls;, maxb;(5)) = bi(s)]:
J#i

where the first line follows because b;(s;) > [ implies b? (s;) is serious for n large enough, implying
both that it wins with positive probability (given our strategy restriction), and that the right-hand
side is s;’s payoff because ties in G" cannot occur at serious bids; the second line follows for any
8 > 0 by MW Theorem 5; and the third line follows by taking the limit first as » — oo and then
as 6 | 0 along a sequence such that Bi(si) + & is never one of the at most countably many mass
points of max;; Bj(S ), ensuring that the first limit, in #, exists for each such 5.8

Let A;(b, b_;) denote the probability that i wins when the vector of bids is (b, b_;). Sup-
pose that V;(b, f),ilsl-) > ( for some bid b and some signal s; of bidder i. Then, letting H; =
{s_; :max;; Bj(s,) < b} and defining E(-|s;, H;) = 0 if Pr(H;|s;) = 0, we have the following:

(A5) 0 < Vi(b, b_ils)
= Pr(H;|s;)E[u;(b, $)A:(b, b_(S_))|s:, H;]
< Pr(H,|s;)E[u;(b, S)|s;, H1E[A; (b, B—i(s—i))\su H;]
< Pr(H|s;))E[u;(b, $)|s;, H;]
= lblf?ZVi(b ,b_ilsi),

where the inequality on the third line follows from MW Theorem 23, because u;(b, s;, S_;) and
1— (b, b_i(S_)), given uniform tie-breaking, are nondecreasing in S_; and so (because the con-
ditioning event is a sublattice) the conditional expectation of their product is no smaller than the
product of their conditional expectations, and the inequality on the fourth line follows because,
under uniform tie-breaking, Pr(H;|s;) > 0 implies 0 < E[A;(b, b_;(S_))|s;, H;] < 1.2

180btaining nonnegativity of the limit in (A.4) is precisely where the restriction on strategies
in G” is required.

YIn particular, (A.5) shows that, under the uniform tie-breaking rule, payoffs from bids that tie
for the winning bid with positive probability can be approximated or improved upon by slightly
higher bids that tie with probability zero. This fact is not obvious because, unlike the private
value setting, winner’s curse effects can make it costly to always “win the tie” by bidding slightly
higher. A slightly higher bid implies that a bidder wins for sure even in the “bad news” events
in which he wins and only a small number (one say) of the other bidders would have tied with
him. Conditional on such events, the higher bid can make him worse off. But under uniform tie-
breaking, the benefit of ensuring that he also wins in the “good news” events in which he wins and
many bidders would have tied with him, outweighs this cost. This is not true for all tie-breaking
rules.
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Because the probability that i wins, A;(b;, b_;), is nondecreasing in b; and nonincreasing
in b_;, A;(b"(s)) is a sequence of functions each of which is monotone in each of its arguments,
s1, ..., SN, being nondecreasing in s; and nonincreasing in s_;. Hence, by Helley’s theorem, there
exists «;: [0, 1]¥ — [0, 1], nondecreasing in s; and nonincreasing in s_;, such that (extracting a
subsequence if necessary) A;(b"(s)) —, a;(s) for a.e. s € [0, 1]V. Consequently, Yiai(s)<lae.
s €[0,1]", and for every i and a.e. s;, Vi(b}(s;), b";|s;) = E[u; (b (s;), S)A:(b"(S5))]s;] converges
to E[u; (b:(s;), S)a:(S)|s:1, by the dominated convergence theorem. Hence, one can think of «;(-)
as a surrogate tie-breaking rule that, were it actually employed at the limit, would yield continuity
of payofts there.

Because each b ;(S;) has at most countably many mass points and B! becomes dense in B;, for
every b € B;, every ¢ > 0, and a.e. s;, there exists 77 > 1 and b € B} such that

imVi(b', boils) < Vi(b, boils) + e

< Vi(b,b" |s;) +2¢ for n>i,
< Vi(bi(s;),b",ls;) +2¢ for n>n,

where the first and second lines follow because b can be chosen so that the probability that any
f),-(S ;) equals b is arbitrarily small, and the third line follows because be B is feasible in G”
for every n > 7 and b” is an equilibrium. Because ¢ > 0 is arbitrary, as is b in (A.5), we obtain,
because / € B; yields a payoff of zero, the following for all i and a.e. s;:

(A.6) sup Vi(b, b_;|s;) < lim V;(b"(s;), b" |s;)
beB; n

= Eu;(b;(s;), $)a;(S)|s:].
For a.e. s; such that b;(s;) > I, letting H; = {S_; :max,; f)j(Sj) <b;(s1)}, we have
0 < Elu;(bi(s)), $)ay(S)]s;]
= Pr(H;|s;) E[u;(b;(s;), $)a;(S)|s:, Hi]
= Pr(Hilsi)E[ui(Bi(Si): S)Isi, HilE[e;(S)]si, Hi]
< Pr(Hls)Elu;(bi(s), $)lsi, Hil
= lim Vi(h(s)) + &, bilsy)
< supVi(b,b_ilsy),

beB;
where the first line follows from (A.6), the second line follows because «;(s;, s_;) =0a.e.s_; ¢ H;,
the third line follows from MW Theorem 23 (as in (A.5)), and the fourth line follows because
a;(-) € [0, 1] and, by (A.4), Pr(H;|s;) > 0 implies E[u;(b;(s;), $)|s;, H;] > 0.2 Hence, by the in-

Note the importance of a;(s;, s_;) being nonincreasing in s_;. The third line can fail other-
wise. For example, consider two risk-neutral bidders with uniform [0, 1] i.i.d. signals, and where
bidder i’s value is s;, the other bidder’s signal. If the surrogate tie-breaking rule, «;(-), is such that
upon a tie the bidder with the highest value wins, then «;(-) is increasing in the opponent’s signal.
The third line now fails if Bi(-) =1/2for i =1, 2, since bidding above or below 1/2 is then strictly
suboptimal whenever s; € (0, 1). (Hence, 6,-(~) =1/2 for i =1, 2 is an equilibrium under this sur-
rogate tie-breaking rule and both players earn positive ex-ante payoffs. Thus, while Maskin and
Riley’s (2000) Proposition 4 is valid for the tie-breaking rule they actually employ, this example
demonstrates that it is not valid for all tie-breaking rules, contrary to their footnote 9.)
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equality on line six and (A.6), the inequalities on lines three, four, and six must be equalities. In
particular, if Pr(H,|s;) > 0, then

(A7) 0 < E[u;(b;(s:), $)Isi;, HE[a;(S)Is;, Hil = E[u;(bi(s;), )|s;, Hy),

and, because u;(b,s) is strictly increasing in s; and H; increases appropriately (as a set)
with s;, MW Theorem 5 implies that the inequality in (A.7) must be strict, and therefore
Ela;(S)|s;, H;] =1, for a.e. s; such that Pr(H;|s;) > 0.

Consequently, given # #1 € {1,..., N} and letting 7, = {s:B,—(s,—) = maijj(sj) >1[,Viel},
if Pr(T;) > 0 then for every i € I, a;(s) =1 for a.e. s € T;. But ), ; ei(s) <1 a.e. 5 € [0, 1V
then implies that #1 = 1. Hence, the probability that, under 13, two or more bidders simul-
taneously submit the highest bid above /, is zero. But then for every i and a.e. s;, V;(-|s;) is
continuous at (b;(s;), b_;), being continuous there whenever bBi(s;) = I because [ is isolated.
Therefore, lim, V;(b}(s;), b",|s;) = Vi(b;(s;), b_ls:) a.e. s;, and so (A.6) implies that b is an equi-
librium. Q.E.D.

REFERENCES

ATHEY, S. (2001): “Single Crossing Properties and the Existence of Pure Strategy Equilibria in
Games with Incomplete Information,” Econometrica, 69, 861-890.

BAJARL, P. (1997): “The First-Price Auction with Asymmetric Bidders: Theory and Applications,”
Unpublished Ph.D. Thesis, University of Minnesota.

BRESKY, M. (1999): “Equilibrium in Multi-Unit Auctions,” Mimeo, CERGE-EI, Prague.

JACKSON, M., AND J. SWINKELS (2003): “Existence of Equilibrium in Single and Double Private
Value Auctions,” Mimeo, Caltech.

JACKSON, M., J. SWINKELS, L. SIMON, AND W. ZAME (2002): “Equilibrium, Communication, and
Endogenous Sharing Rules in Discontinuous Games of Incomplete Information,” Economet-
rica, 70, 1711-1740.

LEBRUN, B. (1996): “Existence of an Equilibrium in First-Price Auctions,” Economic Theory, 7,
421-443.

(1999): “First-Price Auctions in the Asymmetric N Bidder Case,” International Economic
Review, 40, 125-142.

LizzERI, A., AND N. PERSICO (2000): “Uniqueness and Existence of Equilibrium in Auctions
with a Reserve Price,” Games and Economics Behavior, 30, 83-114.

MASKIN, E.,; AND J. RILEY (1996): “Uniqueness of Equilibrium in Sealed High-Bid Auctions,”
UCLA Discussion Paper, forthcoming in Games and Economic Behavior:

(2000): “Equilibrium in Sealed High-Bid Auctions,” Review of Economic Studies, 67,
439-454.

MCcCADAMS, D. (2003): “Characterizing Equilibria in n-Bidder First-Price Auctions,” Mimeo,
MIT Sloan School of Management.

MILGROM, P. R., AND C. SHANNON (1994): “Monotone Comparative Statics,” Econometrica, 62,
157-180.

MILGROM, P. R., AND R. J. WEBER (1982): “A Theory of Auctions and Competitive Bidding,”
Econometrica, 50, 1089-1122.

RENY, P. (1999): “On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous
Games,” Econometrica, 67, 1029-1056.

RENY, P, AND S. ZAMIR (2002): “On the Existence of Pure Strategy Monotone Equilibria in
Asymmetric First-Price Auctions,” Discussion Paper 292, Center for the Study of Rationality,
The Hebrew University of Jerusalem.

RODRIGUEZ, G. E. (2000): “First Price Auctions: Monotonicity and Uniqueness,” International
Journal of Game Theory, 29, 413-432.




