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In Maynard Smith's seminal analysis of the war of attrition the gains to 
competition are assumed to be public knowledge. As a result, the evolution- 
ary equilibrium is a mixed strategy. More recent work has emphasized the 
role of private information (degree of hunger etc.) in generating an 
evolutionary equilibrium in pure strategies, under the assumption that 
competitors are observationally identical. In this paper it is shown that, 
for the war of attrition with private information, there is, in general, a 
continuum of asymmetric equilibria. Thus, even with only a payoti- 
irrelevant observational difference between potential competitors, very 
asymmetric behavior is evolutionally viable. 

In the original formulat ion of  the war of  attrition by Maynard  Smith (1974) 
two contestants each value a prize equally. The oppor tuni ty  cost o f  compet-  
ing is an increasing function of  the length of  the contest and each contestant  
must "dec ide"  when to concede. 

As Maynard  Smith showed, the equilibrium strategy in this game is a 
mixed strategy in which the average time costs incurred are equal to the 
value of  the prize. That  is, on average, a contestant gains nothing f rom 
competing and is therefore equally well off always refusing to enter a contest. 

This rather unsatisfactory feature of  the equilibrium disappears  as soon 
as the assumpt ion of  symmetry  is replaced by the assumption that potential  
contestants in general differ in their valuations (or t ime costs), and that 
each contestant  knows only his own valuation. As established by Bishop & 
Cannings (1978), if the distribution of  valuations is the same for each 
contestant there is an equilibrium concession function T(v), which maps  
each possible valuation onto the t ime o f  concession, generating positive 
expected gains to the contestants. 

However  Bishop & Cannings did not consider the possibility of  asym- 
metric equilibria. In Riley (1980) an example  is presented in which valu- 
ations are distributed exponentially.  It is shown that there is a one paramete r  
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family of asymmetric equilibrium bid Functions and the conjecture is made 
that this is an illustration of  a general proposition. 

In this paper it is shown that there is indeed a continuum of  equilibria 
and the nature of the asymmetries are characterized. This conclusion is in 
sharp contrast with the results of  Maynard Smith & Parker (1976) and 
Hammerstein & Parker (1982). These authors Focus on contests in which 
the identity of  the contestant benefitting more From winning is public 
knowledge. Here we consider situations in which such identification is, at 
best, imperfect. 

Of  course, with a homogeneous population, asymmetric equilibria are 
impossible since there are no observable characteristics upon which to 
condition behavior. However, even within a species, complete homogeneity 
is a rather extreme assumption. For example, age is a commonly observable 
difference. 

Among the family of  asymmetric equilibria are some in which one 
sub-class of agents is very aggressive while the second-class is very passive: 
the aggressive sub-class almost always wins. Such equilibria can therefore 
explain the evaluation of  "'pecking orders" based on observable characteris- 
tics within a species. However, the theory also suggests that these pecking 
orders will not be absolute. Instead equilibrium involves occasional serious 
challenge from agents lower in the pecking order. 

A similar argument holds for competition between species. Indeed it is 
tempting to suggest that the existence of  highly asymmetric equilibria 
explains, in part, the remarkable degree of  specialization in nature. 

To illustrate the point, suppose mutation results in regional variations in 
color differences emerging within a bird population. At the boundary of  
two such regions, if, instead of  competing for territory on all levels of  trees, 
the two different color types begin to specialize, each aggressively defending 
a different part of  trees, both are better off since the asymmetric equilibrium 
involves lower average costs of  combat. But once asymmetry of  behavior 
emerges, the pressure of  selection can begin to operate to create two very 
different sub-species. 

In the following section we begin by briefly reviewing the war of  attrition 
and then present the main result on the existence of a continuum of 
equilibria. Certain characteristics of  these equilibria are also identified. 

Section 2 concludes with some remarks about extensions of  the model 
and also discusses how economists have used the war of  attrition to explain 
competitive behavior. 

I. The War of Attrition 

Consider two observably different populations which may or may not 
belong to the same species. We shall refer to these two groups of  agents as 
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class 1 and class 2. Let the value o f  some prize ( food  or  terri tory) for 
member  o f  class i be v~. We assume that valuat ions  vary across members  
o f  each sub-class and define G(v~) to be the probabi l i ty  that  the valuat ion 
o f  a m e m b e r  o f  class i is vi or  less. 

Throughou t ,  we assume that  the funct ion G(v~), is a member  o f  the family 
o f  dis tr ibut ion funct ions ,  if', defined as follows: 

D E F I N I T I O N  I: F E A S I B L E  D I S T R I B U T I O N  F U N C T I O N S  

The class dis t r ibut ion funct ion F ~  ,~ if F is a strictly increasing and 
con t inuous ly  differentiable m a pp i ng  from [0, a ] ~ [ 0 ,  1]. 

We choose  units so that  the valuat ion vi is measured  in units o f  t ime 
cost. Then  if " c o m b a t "  ends at time t the agent  conceding  has a payoff  o f  

- t while the agent  remaining has a payoff  o f  o~ - t. Since we shall cons ider  
equil ibria in which the time o f  concess ion,  T~(vi), is a strictly increasing 
funct ion o f  v~ we can ignore the possibility that  contestants  concede  simul- 
t aneous ly . t  

Rather  than work directly with the concess ion  funct ions  (Tl(v~), T2(v2)) 
it proves more  convenient  to define the inverse funct ions 

y , ( t )  = T . ' ( t ) ,  i =  1,2 

where y~(t) is the valuat ion o f  an agent in class i who concedes  at t ime t. 
We shall refer to (y~(t), y2(t))  as the concess ion  value funct ions  o f  the two 
classes. 

We now show that  any (y~(b), y,_(b)) satisfying a system o f  ord inary  
differential equat ions  and associated b o u n d a r y  condi t ions  const i tutes  a pair  
o f  concess ion  value funct ions.  

P R O P O S I T I O N  1: S U F F I C I E N T  C O N D I T I O N S  F O R  A N  E Q U I L I B R I U M  

I f  (y l ( t ) ,  y2(t))  is a solut ion to 

(a) y l ( t )F~(y2( t ) )y '2 ( t )  = 1 - F2(y2(t))  

(b) y2( t )F '~ (y , ( t ) ) y ; ( t )  = 1 -  F , ( y , ( t ) )  

such that  

(l) 

min {yl(0),  y2(0)} = 0 (2) 

then (y t ( t ) ,  yz( t ) )  is an equi l ibr ium pair  o f  concess ion  value funct ions .  

t Fudenberg & Tirole (1983) show that a necessary condition for equilibrium is that T~(v~) 
should be a strictly increasing continuously ditterentiable function. Similar arguments for a 
model of sealed bidding can be found in Maskin & Riley (1984). 
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Proof" S u p p o s e  (y t ( t ) ,  y2(t)) satisfies all the  hypo the se s  o f  the  P ropos i -  
t ion.  F r o m  e q u a t i o n  ( 1 ), it fo l lows  that  for  all t > 0 y i ( t )  is s t r ic t ly  i nc reas ing  
and  d i f ferent iab le .  Thus  if  agent  2 concedes  acco rd ing  to Tz(v), the d i s t r ibu-  
t ion o f  his concess ion  t imes  can be wri t ten  as F(y2(t , ) ) .  Then  if  agent  1 
concedes  at  t ime s his expec t ed  gain  is 

L l l~ (s :  v~)= (v~- t~)  dF2(y2( t2) ) - s (1  - F 2 ( y , ( s ) ) .  

Di f fe ren t ia t ing  by s, agent  l ' s  expec ted  gain  to inc reas ing  s is 

0II, (s" v, ) = v, F i (y2(s ) )y ' ( s )  - (l  - F2(y2(s) ) ) .  (3) 
Os 

Subs t i tu t ing  for  f , ( s )  f rom equa t ion  ( t ) ,  we ob t a in  

OI l (  ( v l - y , ( s )  , 
s ; V , ) =  .V~S ) ) ( l - F , ( y ~ ( s ) ) ) .  (4) Os - - 

By hypo thes i s  y2(s) is a s tr ict ly increas ing  funct ion .  Hence  for any  s >  0, 
I - F,(y2(s))  > 0. Then 

[v,-y,(sl]~(s; v,)>-O. 
M o r e o v e r  the inequa l i ty  is strict  for all s such that  yt(s)  ~ v~. Thus  agent  
l ' s  op t ima l  r e sponse  is i ndeed  to choose  s~ so that  y~(st) = vj. A s y m m e t r i c  
a r g u m e n t  es tab l i shes  that  v2 = y2(s2) also def ines  an op t ima l  r e sponse  for  
the  s e c o n d  agent .  

To c o m p l e t e  the p r o o f  we mus t  c o n s i d e r  the  e n d p o i n t s  o f  the e q u i l i b r i u m  
concess ion  va lue  funct ions .  By requ i r ing  c o n d i t i o n  (2), we rule ou t  so lu t ions  
to equa t ion  (1) with Yl (0) and  3'2(0) bo th  posi t ive .  F o r  i f  this  were the case,  
bo th  agents  w o u l d  c o n c e d e  at t ime zero with finite p robab i l i t y .  But then  an 
agent  with a pos i t ive  v a l u a t i o n  wou ld  gain  by wai t ing  in f in i t es imal ly  to see 
i f  his adve r sa ry  c o n c e d e s  immed ia t e ly .  

By an a lmos t  iden t ica l  a rgumen t ,  it is sufficient  at  the  u p p e r  e n d p o i n t ,  
for  the two con tes tan t s  to have  the  same  m a x i m u m  conces s ion  t ime  ?,t that  
is, 

y, (t-) = y2(t") = cc (5) 

t If agents of class 1 never concede after time i then it cannot be optimal for agents of class 
2 to wait until time i+A and then concede; they would save costs by conceding at i+~/2 .  
Thus class 2 agents concede at time i with finite probability. But then a class 1 agent is strictly 
better off waiting until after ?, when his valuation is sufficiently close to a, rather than conceding 
just prior to ? as hypothesized. 
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Since y~(t) and y2(t) satisfying equation (1) are both increasing, either 

(i) y l ( t * ) = a  f o r s o m e  i a n d  t*~(0 ,  co) 

o r  

(ii) y~(t) and y2(t) are bounded away from a for all t. 

To rule out the latter, consider any subinterval [a, b] of  (0, oo). Since y2(t) 
is increasing it follows from equation ( lb)  that 

y2( b ) F'j( y,)y'~( t ) 
1 - FI(yE) 

Integrating we obtain 

y2(b) ln [~ - F ' ( y ' ( a ) ) ]  
F, (y , (b))J  

> 1 >  
y2( a)F'l( y,)y't( t) 

1 - Fl(yl) 

> b - a > y,(a) In F / 1 Fl(yl(a))  1 I 

- k 1 Z ~ ( y , ( b ) ) J "  

If (ii) holds the left hand expression is bounded from above. But this is 
impossible since b can be made arbitrarily large, contradicting the first 
inequality. Then suppose y~(t*) = a. It follows that, as b -~ t*, the right hand 
expression increases without bound. Therefore,  from the second inequality, 
ff~ = 00 .  

Finally, a symmetric argument using equation ( la)  shows that 

y,(b) In [1 - F2(y2(a))] 
l ~ ~ i i j  > b - a "  

Then, as b ~ oo, the left hand expression must also increase without bound. 
To summarize, we have proved that 

lim Yl(/) = a = lim y2(t). 
t ~ c o  t ~ c c  

Hence condition (5) is satisfied, Q.E.D. 
Having provided sufficient conditions for equilibrium, it remains to show 

that there is a continuum of pairs of concession value functions (y~(t), 
)'2(t)) which satisfy these conditions. Before providing a general demonstra- 
tion, we consider the special case in which valuations are distributed 
uniformly on [0, 1], that is 

G(v)  = v, i = 1,2. 

Then the system of equations (1), can be rewritten as 

y,(t)y'2(t) = 1 - y 2 ( t )  
(6) 

y2( t)y'j( t) = I - y [ ( t ) .  
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Dividing the second by the first and rearranging we obtain 

1 dy2 _ l 
yE( l -y2 )  dyl y t ( 1 - y ~ ) "  (7) 

Thus equation (6) implicitly defines a mapping from the valuations of  class 
l into the valuations of  class 2. Integration of  equation (7) yields 

In(l-y2)+k=ln(l~yy~ ~) Y2 / 

The set of  solutions is indexed by the constant of integration, k. When 
k = 0 then by symmetry, y~ = Y2 for all t; substitution back in equation (6) 
leads to - y i ( t ) - l n  [ 1 - y ~ ( t ) ] =  t. Inverting, it follows that the symmetric 
equilibrium concession function is 

Tjvi)=-v~-ln(l-v~), i = 1 , 2 .  

By contrast, when k < 0  then yJt)>y:(t) for all t. Since for any t the 
concession value of  agents in class 1 is larger than the concession value of  
agents in class 2, the probability that a member of class 1 will concede by 
time t is also larger. Class 1 are therefore very passive in comparison with 
class 2. Of course with k > 0 the opposite is true. The range of  equilibria 
is illustrated in Fig. 1. 

~, ca . . . . . .  Y ~ =  Yt 
2 °  

g~ =o ', 

g~ 
~ 2  

y~(t) 
O t~ 

Concession volue 
function for CIoss 1 

FIG. 1. Alternative equilibria for identical uniform distributions of value. 

One interesting feature of  this example is that for any k, the mapping 
Y~ -~ Y2 passes through (0, 0). Therefore the probability of immediate con- 
cession by either class is zero. This turns out to be a property of  equilibrium 
for some, but not all distributions. In fact we shall show that the probability 
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of immediate concession is zero if and only if the two distribution functions 
F~, F2 are in the set ~o defined as follows.t 

D E F I N I T I O N  2: PARTITION O F  ,~ 

If 

iy 3 F l ( x )  d x  

H,(y)  =- x( l  - F~(x)) 

increases without bound as y~0 then F~s ~0. Otherwise the integral has 
some finite limit as y$0. 

With both Ft and F2 in ~o the family of  equilibria have the qualitative 
properties of  the mappings Yl ~y2 as depicted in fig. I.$ With only F, in 
~:0 the family of equilibria have the qualitative properties of the mappings 
depicted in Fig. 2(a). Note that y2(0)=0 and y l ( 0 ) > 0  so that all those in 
class 1 with valuations less than yl(0) concede immediately. The third 
possibility, with neither F~ or F2 in ~:o, is depicted in fig. 2(b). We now 
summarize this formally. 

T~o~ at(b~ . . . . . . . . . . .  ~ ~  F~° 
t// / / / .y, 

F~ ond F2 ~ o  

FIG. 2. Alternative families of  equilibria with V bounded  from above. 

P R O P O S I T I O N  2: C O N T I N U U M  O F  A S Y M M E T R I C  EQUILIBRIA 

For all F ~ ~ there is a one parameter family of  equilibrium concession 
value functions (y~(t, k), y2(t, k)), such that: 

I f  F~, F2 E ,-~o the probability of  immediate concession is zero (y~(0, k) = 
O, Vk); 

t An example  of  a family distr ibutions F ~  ~:o is 

F(v)= 1 -(1 -v) °, a>O. 

An example  o f  a family distr ibutions F g  ~o is F ( v )  = v c, c >  1. 
~: However,  there will not  be a symmetr ic  equil ibrium, with y~ =Y2,  unless F~---F 2. 
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If F~ ~ ~o and F2 ~ ~o the probability of immediate concession is positive 
for members of class 1 and zero for members of class 2; 

If F~, F2~ *~o the probability of immediate concession is always zero for 
one class and strictly positive for the other class in all but one equilibrium. 

Proof." From equation (1) 

y ' (Q  = y2(1-F2(y2)) F'~(yj) 
(9) 

y'~(t) EL(y2) y~( l -F , (y~ ) ) "  

Since y~(t) and y2(t) are both increasing functions, equation (9) implicitly 
defines a first order ordinary differential equation for Y2 as a function of 
y~. To prove the Proposition we must show that there is a one parameter 
family of solutions to this differential equation. 

Rearranging equation (9) we obtain 

F~(y2) dy2 F~(yl) 
(lO) - -  . 

y2(I-F2(y2))  dy~ y~(1-F~(y~)) 

From Definition 2 we have 

FI(y) 
H~(y) = 

y ( l -  F~(y)) " 

We can therefore rewrite equation (I0) as 

d dy2 d 
dy2 H2(y2) dy~ dy~ Ht(y~). 

Integrating we obtain 

H2( y2) = Hl( yl) + k. 

For y >/3 

_[Y H(x) dx 

1 - F , ( y ) ' ~  
= l l n ( l ~ ] ' y  

Thus, as y ~ t ~  and Fi(y)~ 1, Hi(y)-~-0o.  It follows that, for all k, the 
mapping y~ ~Y2 must pass through the point (a, a) .  

Since both Ht and H2 are strictly decreasing functions we can define the 
increasing function 

Y 2  = H21( H~(Yl) + k ). (11) 
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If  F~ and F2~ 40, then Hi(y) increases without bound as y declines to 
zero. Hence,  for all k, equat ion (11) passes through (0, 0). When Fl(v)=- 
F2(v) and k = 0, then yt(t) = y2(t). This is the unique symmetric equilibrium 
examined by Bishop & Cannings (1978). However,  even with Fl(v)= F2(v) 
(which implies that H 2 ( y ) =  Ht(y)) there are a cont inuum of  equilibria; 
when k > 0 ,  then y~(t)>y2(t) and the second class of  agents are the 
"aggresso r s" - - the  opposi te  is true if k < 0. 

Next suppose  F~ ~ 4o and F2~ ,~o. From Definition 2, limy~0 Ht(y) = oo 
while H2(0) is finite. Then there can be no point (0, Y2) satisfying equation 
(10). It follows that equation (11) must, for all k, intersect the y~ axis as 
depicted in fig. 2(a). 

Finally, with F~ and F2~ ~o, both H~(0) and H2(0) are well defined. Each 
member  of  the family of  functions given by equation (11) then intersects 
one of  the axes as depicted in Fig. 2(b), Q.E.D. 

Note that in each case, the equilibrium involves "aggressive" behavior  
by one class of  agents and "pass ive"  behavior  by the other class for small 
or large values of  k. In the first case both classes compete but one class 
almost  always concedes very quickly. In the other two cases one of  the two 
classes concedes immediately  with high probability. 

Moreover,  each of  the equilibria is a strong Nash equilibrium, that is, 
any strategy other than the equilibrium strategy of  agent i strictly lowers 
this agent 's  expected return. Thus Maynard  Smith's  requirement for 
evolutionary equilibrium is satisfied. 

This is not true of  the limiting Nash equilibrium in which one class of  
agents threatens never to concede while the other class always concedes. 
For in this case a mutant  conceding at any time t > 0 does equally well 
against a completely passive opponent .  The equilibrium is therefore not 
evolutionarily stable. t  

2. Extension and Other Applications 

While we have modelled informational  differences as arising from differ- 
ences in the benefits to competit ion,  it should be intuitively clear that 
systematic differences in the costs of  competi t ion will generate qualitatively 
similar conclusions. The crucial simplification is that the gains to waiting 
are, ceteris paribus, always higher for one member  of  a class than for another  
member ,  regardless of  the time elapsed since the start of  a contest. 

t In one shot economic models the limiting equilibrium is also less satisfactory in that if a 
member of the passive population does bid, it is no longer in the interest of the aggressive 
contestant to carry out his threat. In the terminology of game theory the equilibrium is not 
sub-game perfect. See Wilson (1983) for a more complete discussion of this point. 
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In this paper we have focused on animal conflict. However certain aspects 
of  economic competition have essentially the same structure. Consider,  for 
example, two firms working to create a patentable invention. The market 
value of this invention is V, the cost per period of  firm i's research team, 
ci, is a random draw from some distribution F~(ci). Finally, the probability 
firm i will make the breakthrough at time t, given that there has been no 
prior breakthrough is 7r. This last element of  the problem complicates the 
model somewhat but the essential ingredients are the same and again there 
is a continuum of  equilibria. 

A second model discussed by Nalebuff (1982) and Osborne (1985), 
examines competition between two agents when the rewards are delayed 
until agreement is reached. Initial demands are incompatible and agreement 
requires one side or the other to make a concession. Informational asym- 
metry is introduced by making the cost of  conceding a random variable. 
As Nalebuff shows, this model can be formulated so that it is mathematically 
identical to the war of  attrition.t 

Finally, Fudenberg & Tirole (1983) have used a similar approach to model 
the possible exit from an industry by one of  the two currently competing 
firms. One interesting conclusion of  their paper is that as long as there is 
some probability of a positive payoff to both contestants, the equilibrium 
is unique. Their  work suggests a variation of  the war of  attrition that leads 
to a unique equilibrium. 

Imagine that there is some probability, p, that an animal is "irrational".  
By irrational, we mean that once engaged in a conflict the animal will never 
give in; the animal becomes enraged and is then willing to fight to its death. 
The fact that there is a positive probability that an animal will never concede 
leads to a unique outcome. 

The probability that an animal will concede by time t is the chance that 
it is both rational and has a valuation less than y~(t). Thus, the distribution 
of concession times t is now 

~ (  y,(t))  - (1 -p)F~(y , (  t)). (12) 

Replacing F1 and F2 in equation (1) by F1 and Fz we can define, as before, 
a pair of  equilibrium concession value functions )3~(t), )32( 0.  However,  now 
the concession time for an agent with a valuation of a is finite. To see this, 
note from equation (I) that 

t ( y 2 = a )  = ~ YIt:,(y2) 1 _ ja2(yz)y2 < d  -c~ In [1 - ~62(y2)]1~ < - a  lnp. 

t The model analyzed also includes the possibility of escalation of the conflict rather than 
concession. However, this too is incorporated without altering the underlying mathematical 
structure. 
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A s i m i l a r  a r g u m e n t  s h o w s  tha t  /di(Y~) a l so  c o n v e r g e s  in t h e  l imi t  

as y/r~. 
Since H~(y~) converges and 

/ 4 , [ y l ( t ) ]  = / ~ t 2 [ y 2 ( t ) ] +  k, (13)  

There is no longer a one parameter family of concession bid functions 
passing through (a, a), and hence satisfying condition (5). Instead there 
exists a unique equilibrium which is determined by the k that solves 

f I , (  a ) = l~12( ot ) + k. (14) 

Because the functions/d~(y) are strictly monotonic, the choice of k is unique. 
If the distribution functions are the same then H~(y) =/-/2(y), k --0, and 

the symmetric equilibrium is the unique solution. The advantage of this 
reformulation is that it suggests a method for choosing one of the continuum 
of asymmetric equilibria when the density functions difIer.t 
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