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 We model entry incentives in auctions with risk-neutral bidders and characterize
 a symmetric equilibrium in which the number of entrants is stochastic. The
 presence of too many potential bidders raises coordination costs that detract
 from welfare. We show that the seller and society can benefit from policies that
 reduce market thickness (i.e., the relative abundance of buyers). Our analysis
 extends well-known revenue-equivalence and ranking theorems but also demon-
 strates that variations in the auction environment affect optimal policies (e.g.,
 reservation prices) in ways not anticipated by models that ignore entry. (JEL
 D44, L10)

 Most of the auction literature assumes
 that the number of bidders, n, is deter-
 mined exogenously. By ignoring the role of
 entry, the "fixed-n" paradigm simplifies
 comparisons of auction outcomes and per-
 formance across institutions.1 The cele-
 brated revenue-ranking theorems of William
 Vickrey (1961), Paul Milgrom and Robert
 Weber (1982), and related propositions re-
 garding optimal design (see Charles Holt,
 1980; Roger Myerson, 1981; John Riley and
 William Samuelson, 1981; Eric Maskin and
 Riley, 1984) illustrate the power of this ap-
 proach. Its implications, however, are not
 necessarily consistent with more general

 models of equilibrium behavior. To fix n,
 for example, and then suggest that a seller
 would prefer one institution if it raises more
 revenue than another ignores the possibility
 that bidders might have less incentive to
 enter that auction in the first place.

 An alternative approach is to assume that
 entry proceeds until the expected gains to
 all bidders are dissipated. If bidders incur
 real costs of entry (bid preparation, infor-
 mation processing, etc.), entry does not sim-
 ply transfer all rent to the seller. The rela-
 tive efficiency of institutions, and whether
 the seller should favor one mechanism over
 another, may depend on the extent of entry
 those mechanisms induce.

 We model entry incentives in auctions
 with risk-neutral bidders, characterize equi-
 librium behavior, and examine the impact of
 induced entry on performance. There are N
 identical, potential bidders. Each must in-
 cur costs to enter a bid. If there is room for
 only n < N bidders in the auction, the sym-
 metric entry equilibrium involves mixed
 strategies: each potential bidder enters with
 probability q and stays out with probability
 1 - q. Thus, in equilibrium n varies stochas-
 tically between 0 and N with probabilities
 that are determined endogenously by the
 seller's mechanism and other market fac-
 tors.

 This model departs markedly from the
 existing literature on entry and produces
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 important new insights. Previous studies
 (Smith, 1982, 1984; Richard Engelbrecht-
 Wiggans, 1987, 1991; McAfee and McMil-
 lan, 1987b) assume that potential entrants
 use pure strategies, which produces a deter-
 ministic, asymmetric equilibrium in which
 exactly n bidders enter and N - n stay out.2
 The process by which potential bidders di-
 vide into these two groups is not explained.

 Our approach enriches the analysis of
 entry in several respects. First, by introduc-
 ing mixed entry strategies we restore full
 symmetry to the equilibrium, which seems
 natural if potential bidders are assumed to
 be identical. Second, our model produces
 an equilibrium in which the number of ac-
 tual bidders is stochastic and will on many
 occasions be "too large" or "too small"
 even zero. Such outcomes are frequently
 observed in practice and create efficiency
 losses that impact the seller. We are able to
 investigate the ramifications of this phe-
 nomenon within an equilibrium framework.
 Third, and perhaps most significantly, we
 show that market thickness (i.e., the relative
 abundance of potential buyers) has an im-
 portant and surprising impact on auction
 performance-one that sellers may dislike.
 Unlike previous models in which extra bid-
 ders have no real impact, we demonstrate
 that coordination costs associated with thick
 markets create incentives that may induce
 sellers to limit entry by restricting the pool
 of qualified bidders.

 Our treatment of entry raises new issues
 in the analysis of auctions but also extends
 many well-known results from the fixed-n
 literature. We show, for example, that many
 of the celebrated revenue-equivalence and
 ranking theorems still hold after accounting

 for entry. We also show that variations in
 the auction environment affect mechanism
 design, but not necessarily as suggested by
 models that ignore entry. Because reserva-
 tion prices tend to discourage entry, for
 example, they are never desired in indepen-
 dent private-value (IPV) auctions, where
 unrestricted entry is optimal; however, they
 can be useful in common-value (CV) auc-
 tions, where sellers generally want to deter
 entry.

 I. The Entry Process

 Consider a single item offered to group of
 N potential bidders. The offering proceeds
 in two stages. The second stage is where
 bidding transpires; an auction is conducted
 among n participants who have elected to
 incur the fixed cost (c) of entry.3 The out-
 come of that auction is to allocate the item
 according to the rules of the seller's mecha-
 nism (m). In the first stage, and knowing
 what will ensue, each potential bidder de-
 cides whether or not to incur c and enter
 the second stage.

 We maintain the following assumptions
 throughout:

 ASSUMPTION 1: The seller and all poten-
 tial bidders are risk-neutral.

 ASSUMPTION 2: The domain of possible
 values for the item (V) and the domain of
 estimates (x) are compact: V E [0,7v] and x E
 [0,x].

 ASSUMPTION 3: Information is symmet-
 ric; all bidders randomly draw values from
 the same distribution.

 ASSUMPTION 4: The auction mechanism
 (m) and the number of potential bidders (N)
 are common knowledge, and the number of
 actual bidders is revealed prior to stage 2.

 2Engelbrecht-Wiggans (1987) presents an example
 in which entry probabilities are influenced by prof-
 itability, but they do not constitute a Nash equilibrium.
 Donald Hausch (1988) models entry stochastically, but
 his entry probabilities also violate equilibrium.
 Harstad's (1990) treatment of stochastic entry relies
 improperly on the assumption that the expected num-
 ber of bidders always enter.

 3Before entry, potential bidders may already have
 common information regarding the item. Expenditure
 c represents the cost of developing and evaluating
 private information, then preparing and delivering a
 formal bid.
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 ASSUMPTION 5: The environment is such
 that a unique symmetric Nash equilibrium
 bidding function exists, which is increasing.4

 We denote by E[rln,m] each potential
 entrant's ex ante expected gain from enter-
 ing, paying c, learning n, and bidding
 according to the symmetric Nash strategy
 implied by n and m.5 If E[rln,m] is de-
 creasing in n, there exists a unique in-
 teger, n*, such that E[7rln*, m] ? 0 >
 E[rIn* + 1, mi]. We are concerned with cases
 in which entry costs are low enough to ad-
 mit some, but not all, potential bidders:
 0 < n* < N, since only then is a model of
 the entry process important.

 A symmetric entry equilibrium must yield
 the same probability of entry for all poten-
 tial bidders. For q* E (0, 1) to constitute a
 mixed-strategy equilibrium, each potential
 entrant must be indifferent between enter-
 ing or not (i.e., an entrant's ex ante ex-
 pected gain must be zero):

 ()E[n-1 )(q*)n (1-q*)N- E[7rln,m]]

 =0

 where the first terms in the bracket give the
 binomial probability that exactly n - 1 rivals
 also enter, giving n participants in total.6

 The value q* that satisfies (1) character-
 izes equilibrium in mixed strategies. The

 number of actual bidders follows a binomial
 distribution with mean q*N = n and vari-
 ance (1 - q*)n determined by m, N, and c.

 We allow the seller's choice of mecha-
 nism to include any rule by which a bidder
 wins and pays for the item only if his bid- is
 the highest. The mechanism might entail an
 entry fee e, which denotes an ex ante ad-
 mission fee paid to the seller, or reservation

 prices R = {R1,.. ., RN}, where Ri repre-
 sents the common-knowledge reserve price
 enforced by the seller if n bidders enter.
 For clarity, we will denote the seller's mech-
 anism by m(R, e).

 Throughout this paper we assume that
 the seller's valuation is zero. From this and
 Assumption 5 it follows that if R = 0 the
 mechanism is ex post efficient since the item
 will then necessarily be allocated to the
 highest valued use. By setting R above zero,
 the seller might block a profitable trade. We
 let T represent the event that trade occurs
 and let Tn(Rn) represent the probability of
 trade given n and the seller's mechanism.

 Since the entry fee is paid before bidders
 obtain estimates, it does not screen bidders
 with low valuations.7 The fee does enable
 the seller to influence entry as desired un-
 der any mechanism he might choose. This
 seems like a powerful tool, but we show
 later that he might not be inclined to use it.
 We say the seller permits "free entry" if
 e = 0.

 Using symmetry, a bidder's ex ante ex-
 pected profit, conditional on entering an
 auction where trade occurs as one of n

 bidders, can be written as (Vn - Wn)/n -
 (c + e), where Vn is the expected value of
 the item to the highest bidder and Wn is
 the expected payment this bidder makes to
 the seller, both conditional on trade occur-
 ring under the given mechanism with n bid-
 ders. We use fl to denote {m(R,e),c,N}
 and Bi(q,J) to denote the ith bidder's ex-
 pected profit from entering when all N- 1

 4If additional nonsymmetric equilibria exist, we will
 assume that individual behavior conforms to the sym-
 metric equilibrium.

 5In certain markets, entrants do not learn their
 number before bids are tendered. At least for the IPV
 case, however, this variation would not alter our results
 (see footnote 15).

 6Requiring symmetry means that (1) is satisfied by a
 unique q*. In principle, many asymmetric equilibria
 may exist (e.g., the one where n* bidders enter with
 probability 1 and N - n* with probability zero). Simi-
 larly, if n* - 1 bidders enter with probability 1, there
 exists an entry probability 0 < q <1 for the remaining
 N - n* +1 bidders that would constitute equilibrium.
 However, we cannot have asymmetric equilibria in

 mixed strategies of the form 0 < qi < qj <1 since (1) is
 identical for each bidder and strictly decreasing in q.

 7Samuelson's (1985) model of "interim" entry costs,
 which are not incurred until after each bidder learns
 his value, does screen low valuations. Within that
 framework, the total investment in information is inde-
 pendent of entry decisions.
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 rivals are using arbitrary entry probability q:

 (2) Bi(q, Q)

 = E [(fn1 )qnl1(-q)N-nTn(Rn)(Vn-Wn)/n]

 -(c + e).

 If the ith bidder also elects to enter with
 probability q, the expected profit of all N
 parties must be:

 (3) B(q,jQ) = NqBj(q,fQ)

 N.

 _ E PnTn( Rn)Vn-cj
 _n=1

 N

 5-E PnTn(Rn)Wn + ne
 n=1

 where Pn denotes the binomial probability
 that exactly n bidders enter in total. The
 seller's expected revenue is

 N

 (4) I(q, f) =E PnTn(Rn) Wn+ le.
 n = 1

 Total social welfare is the sum of all ex-
 pected gains:

 (5) S(q,jQ) = B(q,Q) + L(q,jQ)

 N N

 =E PnTn(RAn) Vn-iC .
 Ln=1

 Equations (2)-(5) hold for any q, in or
 out of equilibrium. However, the best re-
 sponse for the ith bidder is to enter (qi = 1)
 if B(q, fl) > 0 or to stay out (qi = 0) if
 Bi(q, fl) <0. The bidder is content to use
 q* if and only if

 (6) Bi(q*,fi) =

 which defines the symmetric entry equilib-
 rium, q* = q(fQ).

 The intuition that higher entry costs or
 fees reduce q* and higher payoffs increase
 q* is correct within limits.8 To see why, let
 p denote the correlation (induced by the
 seller's mechanism) between the expected
 profit of an entrant and the number of rivals
 he faces. We can then show the following
 lemma.

 LEMMA 1: p ! 0 is necessary and sufficient
 for:

 dq*/de 5 0
 dq*/dc 5 O

 and

 dq*ld(Vi -Wi);z- 0 (i = 1,... N).

 (See Appendix A for the proof.)
 Without manipulating reservation prices,

 there is almost no scope for p 2 0. In the
 class of IPV auctions described by Riley and
 Samuelson (1981), in which the winner pays
 on average the second-highest value, p must
 be negative. The same is true of any mecha-
 nism in CV auctions so long as competition
 does not rapidly drive down the price paid
 by the winning bidder (typically it would be
 driven up). Therefore, for the remainder of
 this paper we shall assume:

 ASSUMPTION 6: For any mechanism the
 seller would choose, p < 0 whenever R = 0.

 By definition, induced entry drives out all
 expected profit to the bidders. Thus,
 B(q*, fl) = 0, and the seller's expected rev-
 enue constitutes total social welfare:

 (7) rl(q*, f) =S(q*,Qf)
 N

 =E PnTn(Rn) VnI-'c.
 n=1

 This shows that all entry costs are deducted
 from the seller's return, as originally noted
 by Kenneth French and Robert McCormick
 (1984). But (7) also shows that the seller
 pays for the possibility that his mechanism

 8We are grateful to an anonymous referee who
 helped clarify our statement of these results.
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 leaves the item unsold, either due to zero
 entry or the inefficiency of reservation
 prices.'

 Since B(q*, fl) = 0 in equilibrium, only
 the seller's payoff is affected by mechanism
 design. That does not mean that the seller's
 optimal mechanism necessarily maximizes
 social welfare. To clarify, consider a social
 planner who, after selecting a mechanism,
 could impose any q, even one the bidders
 dislike. The planner need not settle for vol-
 untary entry if he wields independent con-
 trol. Despite this fundamental difference,
 we show that the seller and planner favor
 mechanisms that induce identical entry be-
 havior.

 PROPOSITION 1: Any mechanism that
 maximizes the seller's expected revenue also
 induces socially optimal entry. Such a mecha-
 nism might involve entry fees, but not reserva-
 tion prices.

 PROOF:
 The social optimum is defined, for given

 N, by the set {qS, Rs, es} that maximizes (5).10
 We claim that es can be chosen arbitrarily
 since, for given q, it represents a transfer
 that does not affect social welfare.1" That

 RS = 0 follows from the ex post inefficiency
 of any positive reservation price, as shown
 by dS(q, fl)/dRn< 0 for all Rn> 0 (see Ap-
 pendix B). Thus, qs is determined by maxi-
 mizing (5) subject to Tn(O) = 1, for all n. By
 definition,

 S(qs RS,es, N,c) ?S(q*, R, e,N,c)

 = rl(q*, R, e, N, c)

 for all {R, e}, which bounds the seller's
 profit. By Assumption 6 and Lemma 1, q*
 varies monotonically with e between 0 and
 1. By continuity we can, given R = 0, then
 select e* to induce q* = qs. It follows that

 H(q*, R = 0, e*, N, c)

 = [(qs Rs es N c)

 = S(qs, RS, es, N, c).

 The seller maximizes expected revenue by
 designing m(R = 0, e*) to reproduce the so-
 cial optimum.

 This brings us to the celebrated revenue-
 equivalence theorem, which identifies a class
 of efficient mechanisms (first-price, second-
 price, English, Dutch; all with zero reserva-
 tion prices) that produce identical bidder
 payoffs with fixed n. We know by (6) that
 any two mechanisms which, for given n,
 offer bidders equal payoffs must also induce
 equal entry. Furthermore, (7) implies that
 any two mechanisms that share identical
 entry probabilities and reservation prices
 must generate equal expected revenues for
 the seller. This establishes the following
 proposition, which extends revenue equiva-
 lence to models with entry.

 PROPOSITION 2: Any two mechanisms
 that are revenue-equivalent with fixed n and
 R remain revenue-equivalent with induced en-
 try.

 We have not yet characterized the seller's
 optimal entry fee, except to note that it
 maximizes social welfare. But whether the
 seller would encourage (subsidize) or dis-

 9The separate effects can be isolated by rewriting
 (7) as

 N

 fl(q* ,Q) =(1 -po) E, V,,p, /(1 -pO) -nTc
 n=1

 N

 - VnPn[l-Tn(Rn)]-
 n=1

 The first term is the probability that at least one bidder
 enters multiplied by the expected value of the item to
 the highest bidder given entry and trade. Subtracted
 from that are expected information costs and the ex-
 pected cost of reservation prices.

 10Parameters q, R, and e are the only aspects of the
 mechanism that affect welfare; the form of payment is
 irrelevant.

 1"The distribution of profits between bidders and
 seller would not be independent of the chosen entry
 fee, nor do we claim (yet) that the parties would
 voluntarily participate under the terms required to
 produce the social optimum.
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 courage (tax) entry remains unclear. The
 answer to this question requires more spe-
 cific information regarding the auction envi-
 ronment, as we demonstrate next.

 A. Common Values

 In the CV model, first introduced by
 Robert Wilson (1977), the value of the item
 to the winner, V, is independent of the
 number of bidders. We have already estab-
 lished that the seller's optimal reservation
 price is zero, so Tn(Rs) = 1 for all n. Conse-
 quently, social welfare in CV auctions can
 be written as follows:

 (8) S(q, Rs, e) = (1-po) V-qNc

 = [1-(1-q )N] V qNc

 with dS/dq = N[(1 -q )N-lV - c], and
 dS2 /dq2 < 0. Thus, e* must induce entry
 such that at q*, dS/dq vanishes:

 (9) (1 q* N) V c

 PROPOSITION 3: In CV auctions the seller
 should discourage entry by charging a positive
 entry fee but no reservation price. Without the
 entry fee, entry would be excessive from social
 and private points of view.

 PROOF:
 We use the fact that q* depends on e

 through (6) to substitute for c in (9):12

 ( 10) ( 1 _q* N-lIV

 N [(N ) (q*)l (l - q*)N-n(V ' e*.

 We then solve (10) for e*, using the fact
 that W1=0 to eliminate terms of order
 n =1:

 N

 (1w1) e* nE Pn(Vq-ty n)g > i
 n = 2

 with the inequality coming from individual

 rationality, which requires V - W > 0 for
 all n.13 Now, since e*> 0, RS = 0 (which
 implies aq/ae <O), and since S(q,fQ) is
 concave in q and does not depend on e

 directly, we know that aS/lq < 0 evaluated
 at R = e = 0. This establishes the proposi-
 tion.'4

 Excessive entry has been examined in
 other market settings. Gregory Mankiw and
 Michael Whinston (1986), for example, find
 excessive entry in markets where individual
 incentives include a "business-stealing" ef-
 fect. That intuition applies here since the
 CV auction allocates an indivisible item,
 which makes the business-stealing effect
 paramount. The remedy of taxing entry,
 however, must balance benefits against po-
 tential costs. Any tax that reduces q also
 raises the probability of no entrants. This
 suggests another interpretation of Proposi-
 tion 3: to mitigate the business-stealing ef-
 fect in CV auctions, the seller would will-
 ingly institute policies that increase the risk
 of no trade.

 12The seller's optimal policy is R = 0, thus T,(R,) =
 1 in (6).

 13Since V > Wn for all n, as long as W, varies with
 n, e* is strictly positive in (11). Although (11) bounds
 e* away from zero, it does not provide a closed-form

 solution since the pn and n which appear on the
 right-hand side vary with e* via q.

 14The optimal entry fee is the weighted average of
 what a seller could charge in a corresponding set of
 fixed-n auctions. With n fixed, a seller could charge at

 most en = [(V - W )/n]- c without imposing expected
 losses on the bidders. Suppose the seller announces

 that en is the fee he will charge in the auction with
 entry if n bidders enter. From the perspective of a
 bidder who would enter, the probability of being
 charged en is

 Pr[ n -1 rivals] = N -N 1 )qn-1(1- q q)N-n

 and the expected fee would be:

 N (N)n(qNn[ V-Wn c E[en] q ( nn_ 1) (1 -q) [- C

 N V-W
 = Pn q- C
 n= 1 qN

 e* +(1 -q* )NlV_ c =e*, using (9).
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 What if the seller cannot charge entry
 fees? Would he then want to use distortive
 reservation prices to discourage entry in-
 stead? To answer, we must weigh all conse-
 quences of increasing a typical component,

 Rj, above zero:

 (12) dEl/dR1

 = (drl/dq)(dq/dR) DJri /dRj.
 Through entry, the reservation price has a
 feedback effect on revenue, (dH /dq) X
 (dq/dRj), which is typically positive in the
 CV case: the reservation price discourages
 entry, which in turn reduces information
 costs and raises expected revenue. If the
 direct effect of the reservation price is also
 positive holding n constant (dH /dR1> 0),
 then entry reinforces the seller's incentive
 to use it. Thus, we are able to prove the
 following:

 PROPOSITION 4: If entry fees are not al-
 lowed, the seller gains by introducing at least
 R1 > 0 in CV auctions.

 PROOF:
 In proving Proposition 3 we showed that

 dS/dq < 0 at R = 0, which implies dEL /dq

 < 0. We show in Appendix A that dq/dR,
 evaluated at R = 0 is

 (13) dq/dR1 = p1 COV q)[ T,(R1)W, ]R1

 where Covm is the covariance (under mech-
 anism m) between an entrant's expected
 profit and the number of his rivals, which
 we have assumed to be negative given R = 0.
 Since EL = EpnTn(Rn)Wn, we also know that

 (14) dEL/dR1 = p1d[T1(R1)W1]/dRj.

 Finally, we show in Appendix B that

 d[T1(R1)W1]/dRj > 0 at R = 0, which by (13)
 and (14) implies dEI/DR1 > 0 at R = 0.

 While the use of reservation prices against
 single bidders may appear obvious, it is not
 universal. Later we show that sellers in IPV
 auctions would never impose reservation

 prices-not even against single bidders.
 Proposition 4 does not say that reservation
 prices are generally desirable for n> 1.
 As we demonstrate in Levin and Smith
 (1993), for large enough n the direct effect
 of Rn > 0 is negative in CV auctions; thus
 use of higher-order reservation prices to
 discourage entry might backfire.

 Next we reexamine the revenue ranking
 of CV auction mechanisms. Milgrom and
 Weber (1982) have shown that, with n fixed,
 a risk-neutral seller in CV auctions prefers
 simple second-price mechanisms to first-
 price mechanisms, and so forth. This rank-
 ing is not affected by entry, as we demon-
 strate next.

 PROPOSITION 5: The revenue ranking of
 any two CV auction mechanisms that do not
 entail reservation prices or entry fees is pre-
 served with equilibrium entry.

 PROOF:
 Suppose that, for fixed n, the seller

 prefers mechanism a to b, neither of which
 entails entry fees or reservation prices. The
 seller's expected revenue is concave in q,
 and by Proposition 3, both mechanisms in-
 duce excessive entry. The seller favors the
 mechanism that produces smaller q. Since
 the seller's expected revenue is higher (for
 given n) under mechanism a, the expected
 profit of each bidder must be lower. By
 Lemma 1, mechanism a would then induce
 smaller q than mechanism b.

 This proof hinges on the tendency of both
 mechanisms to induce excessive entry. If
 they do not, the fixed-n ranking can easily
 be reversed. For example, consider again
 mechanisms a and b now accompanied by a
 fixed reservation price large enough to re-
 duce entry in both auctions below the so-
 cially optimal level. If mechanism a would
 be favored by the seller with n fixed, equi-
 librium entry must satisfy: qa < qb < qs.
 Mechanism b, which induces greater entry,
 comes closer to the optimum and must now
 be preferred. Entry has reversed the fixed-n
 ranking.

 Proposition 5 extends many results from
 the previous literature. Its implications in-
 clude seller preference for second-price
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 mechanisms over first-price mechanisms
 in affiliated CV auctions with entry (cf.
 Milgrom and Weber, 1982 theorem 15)
 and seller preference for truthful disclosure
 of his private information (cf. Milgrom and
 Weber, 1982 theorems 8, 9, 13, 16, and 17).

 B. Private Values

 1. Independent Private Values. -Now con-
 sider IPV auctions, for which we will show
 that the seller does not want to discourage
 entry.15 His optimal policy is given by e*,
 which we have argued must satisfy the nec-
 essary condition for a social optimum:
 dS(q, fQ)/dq = 0. R = 0 implies Tn(Rn) = 1
 for all n, so using (5), S(q, fl) can be writ-
 ten as

 (15) S(q,Qf)

 N E()n(l- )N-nV-qNc
 n= 1

 On taking the partial derivative we obtain:

 ( 16) dS(q7fl)ldq

 = [ pnVn(n - qN)- qNc(l- q)]j (1 - q).

 PROPOSITION 6: Optimal entry, for soci-
 ety and the seller, occurs in IPV auctions
 when the seller charges no entry fee or reser-
 vation price.

 PROOF:
 Since R' = 0 by Proposition 1, we need

 only show that (16) vanishes at e = 0. Using
 (3) and equilibrium condition (6) under the

 presumption that e = 0 implies

 N

 (17) qNc= E Pn(Vn -Wn).
 n=1

 However, in IPV auctions the expected pay-
 ment made by the highest bidder is on aver-
 age equal to the second-highest valuation,
 which permits us to write:16

 (18) Vn-Wn = n(Vn -Vn_1).

 Substituting this into (17) gives: qNc=
 EN 1pnn(Vn - Vn-1), which, when substi-
 tuted back into (16) gives

 ( 19) aS(q,fQ)/dq
 N N

 F PnVn(n-qN) )-(1 - q) , Pnn( Vn -Vn _l)
 n=1 n=1

 q(l - q)

 [N N

 = [ Pnnvn -I Pn nq(N-n)1(1
 _n=1 n=1

 N N-1I

 = PnnVn - IE Pn+l(n +1)Vn
 _n=1 n=l1

 15In the risk-neutral IPV case, our equilibrium anal-
 ysis and results hold even if bidders do not learn the
 number of their rivals after entering, since entrants are
 indifferent about whether the actual number is re-
 vealed or not (see Matthews, 1987; McAfee and
 McMillan, 1987a; Harstad et al., 1990). We thank a
 referee for calling our attention to this generalization.
 However, if bidders are risk-averse, their ex ante ex-
 pected utility (and the entry equilibrium) is affected by
 the assumption that n is revealed.

 16This property holds for all IPV mechanisms in
 which the bidder who values the object most highly is
 certain to receive it and any bidder who values the
 object at its lowest possible level has an expected
 payment of zero (Milgrom and Weber, 1982 theorem
 0). The expected value of the item to the bidder

 holding the highest of n values is, by definition, Vn:

 Vn =fvnf(v)F(v)n 1 dv.
 u

 Since expected payment equals the expected value of
 the second-order statistic, we have

 Wn = vn(n - 1)f(v)[1 - F(v)]F(v)n -2 dv
 u

 = n v(n - 1)f(v)F(v)n 2 dv

 - (n -1)f vnf(v)F(v)n 1 dv

 = nVn 1( n - 1)Vn

 which implies

 (Vn - Wn) = n(Vn -Vn
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 where the last equality is due to

 q(N- n)pn /(l-q) = (n +l)pn,1.

 We claim that (19) vanishes since V0 = 0.17

 COROLLARY: In IPV auctions with entry,
 the seller should not resort to reservation
 prices, even if he cannot charge entry fees.

 This finding concurs with McAfee and
 McMillan (1987b) and Engelbrecht-Wiggans
 (1991) but contradicts a major theorem of
 the fixed-n IPV literature: that a distortive
 reservation price always helps the seller (cf.
 Jean-Jacques Laffont and Maskin, 1980;
 Milton Harris and Artur Raviv, 1981; Myer-
 son, 1981; Riley and Samuelson, 1981). The
 intuition behind our result, first suggested
 by Engelbrecht-Wiggans (1991), lies in (18).
 When one bidder joins an IPV auction when
 n - 1 are present, the social gain is simply

 (Vn- 1 - c), whereas the individual bid-
 der's gain is (Vn- - W))/n - c. Due to (18),
 the two always coincide. No matter how
 many rivals are expected, in IPV auctions
 the private gain from further entry corre-
 sponds exactly to that of society (and the
 seller). Since the seller has no reason in
 IPV auctions to discourage entry (unlike the
 CV case), the reservation price loses its only
 appeal.18

 How can this be reconciled with our un-
 derstanding of reservation prices in fixed-n
 models? Our model reduces to the fixed-n
 case when n* > N. Therein, each bidder has
 positive expected profits (assuming e = 0)
 even in equilibrium. Social welfare would
 surely fall if any bidder elected to exit, but

 since each bidder has a positive margin of
 profit, the seller may safely try to appropri-
 ate some part of it without triggering exit.
 Thus, the optimality of reservation prices
 when n is fixed.

 2. Affiliated Private Values.-How robust
 is the finding of optimal entry within the
 private-values paradigm? Since we found
 incentives for excessive entry in the CV
 case, where strong affiliation exists, there
 may be a presumption that extensions of
 Proposition 6 (optimal entry) could be de-
 feated by strong affiliation among private
 values.19 The analogy is misleading. Exces-
 sive entry may arise in the APV case, but it
 is not triggered by the degree of affiliation.

 We approach the problem using a partic-
 ular model of affiliated values drawn from
 previous literature (see Milgrom, 1981;
 Engelbrecht-Wiggans, 1991; Levin and
 Smith, 1993). Let z represent an unknown
 parameter of the distribution that generates
 private values, and assume that all bidders
 hold identical prior beliefs regarding this
 parameter, represented by the density g(z).
 To create affiliation, we imagine that the
 private values held by the bidders {x1,... , xn
 are conditionally independent and identi-
 cally distributed, given z.

 With this formulation, (18) holds also for
 the affiliated model, which means that pri-
 vate and social gains from entry still coin-
 cide, but only for second-price mechanisms.

 PROPOSITION 7: If private values are af-
 filiated (conditionally independently and iden-
 tically distributed), then free entry with no
 reservation price is optimal for society and
 the seller under a second-price mechanism,
 but excessive under a first-price mechanism.

 PROOF:
 We first confirm the validity of (18) under

 a second-price mechanism. The expected
 value of the item to the bidder holding the

 17The second derivative of S(q, fl) is negative at the
 point e = 0, which ensures at least a local maximum. It
 would be sufficient to demonstrate that S(q, fl) is
 quasi-concave to ensure that a global optimum has
 been attained.

 18The intuition in McAfee and McMillan (1987b) is
 different. Sellers use reservation prices in the fixed-n
 literature, they argue, to extract profits from bidders at
 equilibrium. Since entry drives bidders' profits to zero
 anyway, nothing is left to be extracted by the reserva-
 tion price. We show that sellers in CV auctions may
 want to use reservation prices anyway.

 19We thank an anonymous referee for suggesting
 this line of inquiry.



 594 THE AMERICAN ECONOMIC REV7EW JUNE 1994

 highest signal is, by definition,

 Vn =f[Evnf (v Iz)F(v IZ)n1 dv] g(z) dz.

 But the winning bidder in a second-price
 auction pays the amount of the second-
 highest signal, which allows us to write

 Wn = f vn(n - 1)f (v Iz)
 Ez ES

 x [1- F(v iz)]F(v Iz)n-2 dv] g(z) dz

 = n v[f(n 1)f(v Iz)F(v Iz)n2 dv g(z) dz

 - (n - 1)f [fvnf(v Iz)F(v Iz)n -1 dv] g(z) dz

 =nVn -(n- 1)Vn

 which extends (18) under second-price
 mechanisms to the APV case. This part of
 the proof can then be completed by follow-
 ing the same steps as in IPV. Regarding the
 second part, entry under first-price mecha-
 nisms is greater since for fixed n the seller
 prefers second-price to first-price mecha-
 nisms (see Milgrom and Weber, 1982 theo-
 rem 15), which means that the expected
 profit of each bidder must be higher un-
 der first-price mechanisms. By Lemma 1,
 first-price mechanisms must then induce
 larger q.

 To summarize, whether values are com-
 mon or private, affiliation ensures that
 second-price mechanisms induce less entry
 than first-price mechanisms. In the CV case,
 free entry is excessive under both mecha-
 nisms, but less so under second-price mech-
 anisms. In the private-values case, free
 entry is optimal under second-price mecha-
 nisms but excessive under first-price mecha-
 nisms.

 II. Market Thickness and

 Coordination Costs

 What is the optimal number of potential
 bidders? Is more necessarily better? And

 does the seller's interest match that of soci-
 ety? The presumption of previous studies,
 that superfluous bidders simply stay out and
 become irrelevant to the outcome, over-
 looks coordination problems that arise when
 "too many" participants are involved. Our
 approach permits this effect to be investi-
 gated, with new and surprising results.

 Recall that n* is the point of transition
 between pure and mixed entry strategies.
 When N > n*, symmetric equilibrium re-
 quires each potential bidder to enter with
 probability q < 1. Since each entry decision
 is taken independently, the number of en-
 trants can range from 0 to N. Many of those
 realizations are unfavorable for the seller
 and society. The question is whether the
 weight of unfavorable outcomes varies sys-
 tematically with N. We will show that it
 does and will demonstrate that limiting the
 number of potential entrants reduces coor-
 dination costs and benefits the seller and
 society.

 To begin, we note that the expected num-
 ber of bidders induced by a given mecha-
 nism varies ambiguously with N and is by
 itself an incomplete indicator of seller or
 social welfare. Since any increase in N is
 typically offset by a reduction in q*,20 the
 net change in the expected number (ni = qN)
 may be slight and ambiguous in sign. Even
 when the effects are exactly offsetting, social
 welfare would be affected since the variance
 of n, given by (1- q)ni, still rises (with ni
 fixed) as q falls. The presence of more
 potential bidders increases the likelihood
 of extreme outcomes. The potential cost of
 this is easy to demonstrate in the case of
 CV auctions.

 PROPOSITION 8: As the number of po-
 tential bidders increases beyond n* in CV
 auctions, the probability of no entry also in-
 creases if the seller is using an optimal mech-
 anism.

 20It is easy to show that a sufficient condition for
 dq/dN < 0 is that Vn - WH- be decreasing in n. Details
 are omitted for brevity.
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 PROOF:
 Let qN be the optimal probability of en-

 try when the number of potential bidders
 is N. Thus, (1- qN)N is the probability of
 no entry. From (9), (1 - qs)N- I = c / V; thus
 qs declines with N and (1 - qs )N =
 (1 - qN)(c/ V) must increase with N.

 When there are many potential entrants,
 not only is the number of bidders stochastic
 and therefore too small or too large on
 occasion; for a given mechanism the num-
 ber can be too small or too large on aver-
 age. One relevant benchmark is provided by
 n*, which corresponds to the socially opti-
 mal number of bidders for a broad class of
 private-value auctions.21 In many examples
 we find that ni can be made either smaller
 or larger than n* simply by varying the
 magnitude of entry costs.22

 The coordination problems we have dis-
 cussed impose specific costs on society that
 stem from mixed entry strategies. Thus, the
 transition to stochastic entry which occurs
 at N = n* has broad welfare implications.

 PROPOSITION 9: The level of social wel-
 fare generated by optimal auctions decreases
 monotonically as N increases beyond n*.

 PROOF:
 Assume N> n*, which implies that qs =

 qs(N) < 1. Suppose provisionally that the
 number of potential entrants drops by 1 to
 N- 1, but that each remaining member con-
 tinues to use qs(N). From (5), the, impact
 on social welfare is:

 N N-1

 (20) AS= E pnVnE- E nVn-qsc
 n=l n=l

 where

 n = [(N - 1)!/n!(N- 1- n)!](qs)n(l - qs)N-l-n

 = pn(N - n)/N(l - qS).

 After substituting for 4n in (20) and simpli-
 fying, we obtain

 N (n-qsN)

 (21) AS= E PnVn q-S
 n =1 n(1-qs)N~

 = (qs/N) aS/lq = 0

 where we have used (16) and the fact that

 aS/lq = 0 at qS. Thus, dropping one poten-
 tial entrant while holding entry probabilities
 constant leaves social welfare unchanged.23
 If we now relax the constraint on qs, it will
 adjust to the new social optimum based on
 N- 1, and by construction S must increase.

 The coordination problem grows with the
 number of potential bidders. Proposition 9
 demonstrates that each step taken to elimi-
 nate the source of the coordination problem
 (successively reducing N) enhances social
 welfare.

 COROLLARY: The expected revenue of any
 seller who uses his optimal mechanism in-
 creases monotonically as the number of po-
 tential bidders decreases toward n*.

 Since a seller's optimal mechanism repro-
 duces the social optimum, his preference
 for N must exactly match that of society. If
 the number of potential bidders is too high,
 the seller can mitigate the coordination
 problem ex ante by restricting the number

 21See footnote 16 and our account of second-price
 APV auctions.

 22Specific examples are omitted to conserve space,
 but details are available from the authors upon re-
 quest.

 23Let qS represent the socially optimal entry proba-
 bility for N potential entrants and consider the deci-
 sion of the Nth, when N- 1 are already using qS* The
 gains from the Nth party entering must exactly offset
 the costs of his entering. If this were not true, society
 would gain by his being either definitely in or definitely
 out, and it could not be optimal for him to use qS also.
 Since the expected gains from his entering equal the
 expected costs, nothing is lost if he is eliminated from
 the market, so long as the remaining N - 1 members
 continue to use q S
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 of potential entrants qualified to bid.24
 Whether the seller (or society) would ever
 gain by suppressing the number of potential
 entrants below n* depends on the environ-
 ment. By definition the Nth entrant re-
 ceives nonnegative gains when N < n*.
 Since that gain corresponds exactly to the
 social gain from entry in IPV auctions (see
 above), by pushing N below n* the seller
 would reduce social welfare and his ex-
 pected revenue. In CV auctions, social gains
 are zero (and therefore smaller than social
 costs) for all n> 2; thus reductions beyond
 n* are beneficial.

 Proposition 9 and its corollary cast new
 light on the influence of market thickness,
 which in our model can be defined as 0=
 N/n*. The thicker the market, the larger is
 the number of redundant bidders, and the
 greater are the penalties that society and
 the seller pay for permitting randomized
 entry. Demand and supply factors influence
 market thickness separately and therefore
 exert distinct effects on the magnitude of
 coordination costs. For example, holding the
 number of potential bidders (demand side)
 constant, any change in the nature of the
 item (supply side) that increases the relative
 magnitude of c will reduce n* and thereby
 raise 0. Thus, sellers (or procurers) who
 deal in unique or technical items that are by
 nature relatively hard to evaluate are more
 likely to gain by restricting the number of
 qualified bidders than sellers (or procurers)
 who deal in items whose value is straightfor-
 ward.

 III. Concluding Remarks

 Most of the previous auction literature
 assumes that the number of bidders is given.

 Endogenizing entry is a natural step, one
 that is necessary to complete our under-
 standing of how auction design affects per-
 formance. We have introduced a model of
 induced entry that differs from previous
 work in several important ways. First, we
 maintain symmetry throughout, which limits
 potential entrants to mixed entry strategies.
 One consequence is that the number of
 bidders is stochastic-even in equilibrium
 -with distribution determined endoge-
 nously by characteristics of the seller's
 mechanism and other market factors. This
 can account for the variability in number of
 bidders frequently observed within repeated
 auctions of similar items, even the failure of
 any bidders to participate. Despite this new
 element, we are able to show that many
 revenue-equivalence and ranking results
 from the fixed-n literature generalize to
 auctions with entry. When values are affil-
 iated, for example, second-price mecha-
 nisms induce less entry than first-price
 mechanisms, which always works to the
 seller's advantage.

 Second, our treatment of induced entry
 generates new and unexpected insights.
 Reservation prices are seen strictly as in-
 struments that discourage entry, which may
 or may not be beneficial depending on the
 environment. Third, and perhaps most in-
 teresting, is the realization that since
 stochastic entry creates coordination prob-
 lems whose cost mounts as the thickness of
 the market increases, the mere existence of
 more potential bidders can impose costs on
 society and the seller, whether they are ac-
 tually bidding or not.

 These insights should direct empirical
 study of auction markets along entirely new
 lines of research. For example, holding the
 number of potential bidders and the value
 of the item constant, we have shown that
 coordination problems impose greater costs
 on the sellers of items that are complex,
 unique, or otherwise costly to evaluate.
 Those sellers have the greatest incentive to
 adopt institutions designed to prequalify
 bidders and limit participation. Conversely,
 holding complexity (or entry costs) constant,
 any sudden decrease in the value of an
 offering (like the plunge in value of offshore

 24In CV auctions, this result relies heavily on the
 seller's ability to charge entry fees, which are part of
 his optimal mechanism. In IPV auctions, the ability to
 charge entry fees is almost inconsequential, since they
 are not part of the optimal mechanism when N> n*.
 However, the seller would need them to capture the
 small surplus that may still accrue to bidders when
 N = n*. Thus, sellers who cannot charge entry fees in
 IPV auctions might prefer n* + 1 potential bidders to

 n*, but never more.
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 oil leases that occurred after 1981) reduces
 the number of bidders that fit profitably in
 the auction, which simultaneously increases
 market thickness, the size of welfare losses
 that stem from stochastic entry, and the
 seller's incentive to limit participation.

 APPENDIX A: COMPARATIVE STATICS
 OF ENTRY

 Using (2), the differential of (6) with re-
 spect to e and q can be written as

 1

 (Al) q(l- q)

 lN-1

 X 0 k ,[k -q(N- 1)]Tk+ I(Rk+0)
 k =O

 X[ k W 1? dq - de = O

 where ok represents the probability that a
 bidder who does elect to enter will meet
 exactly k rivals:

 ok = (N )qk(l - q)N-l-k

 The summation over k in (Al) is simply the
 covariance, denoted Covm, between a bid-
 der's expected profit, given that he enters,
 and the number of rivals he faces. Solving

 for Dq/le yields:

 (A2) dqvde= q(lm- .

 Taking differentials with respect to the
 other variables yields similar results:

 (A3) Cqvdc q(l q)

 (A4) dqld(Vj- Wj) __pjTj(Rj)(1 - q)
 (A4) es/a(blishes )- Lm 1UsgiNCov,g l

 This establishes Lemma 1. Using similar

 steps we also obtain

 (AS) dq/dRj

 pj(1 - q)[ Tj(Rj)(Vj - Wj)]/dRj
 N Covm

 As shown in Appendix B, d[Tj(Rj)Vj/adRj
 vanishes at R = 0, and so (A5) evaluated at
 R = 0 and e = 0 yields (13).

 APPENDIX B: EVALUATION OF

 dTn(R,)Vn IdRn

 To establish dS(q, fi)/dRn<? 0, it is suf-
 ficient by reference to (5) to show:

 DTn(Rn)Vn /dRn < 0 for all Rn > 0. This will
 be true for any auction in which the n
 actual bidders receive private information
 (values, estimates, etc.) distributed over a
 finite interval [0, x]. We shall denote the ith
 bidder's information by xi with density
 f(xi), and define xn = max{x1} with density
 h(xjn). Also, for all Rn E [0, E(Vlxn = x)],
 define gn(Rn) = inf z ? 0 such that E[JVnjIxj
 = z] > Rn. It is then clear that if and only if
 xjn ? gn(Rn) will a trade occur since the
 highest signal (which maps to the highest
 bid due to the monotonicity of the bidding

 function) must be at least gn(Rn) to gener-
 ate a bid equal to or greater than the reser-
 vation price. Consequently, we can write

 (131) Tn(Rn) Vn

 Vnf(VnlX4n)dVnjh(Xin) dXn
 gn(Rn) EVn Ix

 which, after differentiating, gives

 (1B2) dTn(Rn)Vn IdRn

 = -g(Rn)h(gn(Rn))

 x J Vnf f(Vn n(Rn)) dVn
 Vfn I gn(Rn)

 <0

 where the last (weak) inequality is by the
 fact that every term in (B2) is nonnegative
 except the leading sign. Evaluated at Rn > 0,
 very often (B2) will be strictly negative, al-
 though we require only a weak inequality to
 establish Proposition 1.

 We now show that dTn(Rn)Vn I/dRn is
 identically zero when evaluated at Rn = 0,
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 as claimed in Appendix A. Consider first
 the IPV case, where VJ/ = x1 when Rn = 0,
 which implies that gn(Rn) Rn and g'( )

 = 1. Moreover, F(VnJIx') = 0 if Jn < x1 and
 F(Vn Ixn1) = 1 elsewhere. Consequently,

 f Vnf(Vn Ijn(Rn)) dVn

 =|Vnf (Vn lRn) dVn = Rn
 EVn IRn

 where the last equality comes from integra-
 tion by parts. Thus, (B2) gives:

 Tn(Rn) V - h(9n(gRn))9gn(Rn )
 aRn

 -h(gn(Rn))R = O

 at Rn=O.
 Next consider the CV case. If

 V| InR Vn dF(Vn ign(Rn = ?)) = ?

 then (B2) is zero, and we are done. Assume
 the contrary:

 (B3) f Vn dF(Vn lgn(Rn = 0))=E > 0.
 EVn Ijgn(Rn)

 Our definition of gn(Rn) and (B3) together
 imply that gn(t) 0 for all t E [0, e] and
 g'(0) = 0 (i.e., the level of filtering does not
 change as R1 rises above zero since it is not
 binding there on any bidder). Finally, g'(0)
 = 0 causes (B2) to vanish.
 Next, we demonstrate thatdT1(R1)Wl /dR,

 > 0 when evaluated at R = 0, e = 0. Start by

 writing dTj(Rj)Wj /dRj as WjdJTj(Rj)/dRj +
 Tj(Rj)dWj/dRj. For j= 1, we have W1=0
 and T1() = 1. Thus, we need only to sign
 dW1 /dR1. W1 has a particularly simple
 form:

 (B4) W1 = Pr[x ? gl(R,)]RI

 where x is the signal held by the lone

 bidder and g1(Rj) is the screening level

 associated with the seller's reservation price.
 We differentiate (B4) to obtain

 (B5) dWl /dR1 = Pr[x 2 g1(R1)]dRl /dR

 + RldPr[x ? gl(R1)]/dR,

 = Pr[x 2g1(O)] = 1

 when evaluated at R = 0. Thus,

 dT,(R1)W, /dR, >0.
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