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 The role of imperfect information in a principal-agent relationship subject
 to moral hazard is considered. A necessary and sufficient condition for imperfect
 information to improve on contracts based on the payoff alone is derived, and
 a characterization of the optimal use of such information is given.

 1. Introduction

 U It has long been recognized that a problem of moral hazard may arise when
 individuals engage in risk sharing under conditions such that their privately
 taken actions affect the probability distribution of the outcome.1 This situation
 is common in insurance, labor contracting, and the delegation of decisionmaking
 responsibility, to give a few examples. In these instances Pareto-optimal risk
 sharing is generally precluded, because it will not induce proper incentives for
 taking correct actions. Instead, only a second-best solution, which trades off
 some of the risk-sharing benefits for provision of incentives, can be achieved.

 The source of this moral hazard or incentive problem is an asymmetry of
 information among individuals that results because individual actions cannot
 be observed and hence contracted upon. A natural remedy to the problem is
 to invest resources into monitoring of actions and use this information in the
 contract. In simple situations complete monitoring may be possible, in which
 case a first-best solution (entailing optimal risk sharing) can be achieved by
 employing a forcing contract that penalizes dysfunctional behavior. Generally,
 however, full observation of actions is either impossible or prohibitively
 costly. In such situations interest centers around the use of imperfect estimators
 of actions in contracting. Casual observation indicates that imperfect informa-
 tion is extensively used in practice to alleviate moral hazard, for instance in
 the supervision of employees or in various forms of managerial accounting.

 A natural question then arises: when can imperfect information about
 actions be used to improve on a contract which initially is based on the payoff
 alone? Secondly, how should such additional information be used optimally?

 This paper is partly based on Chapter 4 of the author's unpublished dissertation, "On Incentives
 and Control in Organizations," submitted to Stanford University, December 1977. It was written
 while the author was visiting the Center for Operations Research and Econometrics, Universit6
 Catholique de Louvain, Belgium. An earlier version was presented at the European Meeting of the
 Econometric Society in Geneva, 1978. I am much indebted to Joel Demski, Fr0ystein Gjesdal,
 Charles Holloway, David Kreps, and Robert Wilson for many helpful discussions and to David Baron
 and Gerald Kramer for detailed comments on an earlier manuscript.

 1 See for instance Arrow (1970), Zeckhauser (1970), Pauly (1974), and Spence and Zeckhauser
 (1971).
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 A recent interesting paper by Harris and Raviv (1976) addresses these questions
 in the context of a principal-agent relationship in which the agent provides
 a productive input (e.g., effort) that cannot be observed by the principal
 directly.2 Their results relate to a very specific kind of imperfect monitoring of
 the agent's action. They study monitors which provide information that is
 independent of the state of nature and allows the principal to detect any
 shirking by the agent with positive probability. Such monitors are of limited
 interest, however, since they are essentially equivalent to observing the agent's
 action directly, because a first-best solution can be approximated arbitrarily
 closely in this case.3 Clearly, one cannot expect imperfect monitoring to
 possess such strong characteristics in general.

 Employing a different problem formulation from Harris and Raviv's, we
 are able to simplify their analysis and generalize their results substantially.
 Both questions posed above are given complete answers (in our particular
 model). It is shown that any additional information about the agent's action,
 however imperfect, can be used to improve the welfare of both the principal
 and the agent. This result, which formalizes earlier references to the value of
 monitoring in agency relationships (Stiglitz, 1975; Williamson, 1975), serves
 to explain the extensive use of imperfect information in contracting. Further-
 more, we characterize optimal contracts based on such imperfect information
 in a way which yields considerable insight into the complex structure of actual
 contracts.

 The formulation we use is an extension of that introduced by Mirrlees
 (1974, 1976). We start by presenting a slightly modified version of Mirrlees'
 model (Section 2), along with some improved statements about the nature of
 optimal contracts when the payoff alone is observed. In Section 3 a detour is
 made to show how these results can be applied to prove the optimality of
 deductibles in accident insurance when moral hazard is present. Section 4 gives
 the characterization of the optimal use of imperfect information and Section 5
 presents the result when imperfect information is valuable. Up to this point
 homogeneous beliefs are assumed, but in Section 6 this assumption is relaxed to
 the extent that we allow the agent to be more informed at the time he chooses his
 action. The analysis is brief, but indicates that qualitatively the same results
 obtain as for the case with homogeneous beliefs. Section 7 contains a summary
 and points out some directions for further research.

 2. Optimal sharing rules when the payoff alone is observed
 * We study a principal-agent relationship, where the agent privately takes
 an action a E A C R, A being the set of all possible actions, and a together with
 a random state of nature 0, determines a monetary outcome or payoffx = x(a, 0).
 The problem is to determine how this payoff should be shared optimally between
 the principal and the agent. The principal's utility function is G(w), defined over
 wealth alone, and the agent's utility function is H(w,a), defined over wealth

 2 The main results of Harris and Raviv (1976) are reported in their 1978 paper. For earlier work
 on principal-agent models, see Wilson (1969), Ross (1973), and Mirrlees (1976).

 3 This fact, which is not observed by Harris and Raviv (1976), can be verified by using an
 argument similar to the one given by Mirrlees (1974, p. 249), or by Gjesdal (1976) (cf. example in
 footnote 7). Obviously, it implies that monitoring, which satisfies Harris and Raviv's conditions,
 is valuable. This is their partial answer to the first question raised above.
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 and action. The model is further restricted by assuming that H(w,a) = U(w)
 - V(a), with V' > 0 and Xa > 0.4 The interpretation is that a is a productive
 input with direct disutility for the agent and this creates an inherent difference
 in objectives between the principal and the agent. It is convenient to think of a
 as effort and this term will be used interchangeably with action. Since the
 problem of moral hazard can be avoided when the agent is risk-neutral (Harris
 and Raviv, 1976), we shall assume U" < 0. The principal may or may not be risk-
 neutral, i.e., G" < 0.

 In this section, we consider the case where the principal observes only
 the outcome x. Thus, sharing rules have to be functions of x alone. Let s(x)
 denote the share of x that goes to the agent and r(x) = x - s(x) denote the
 share that goes to the principal. It is assumed that both parties agree on the
 probability distribution of 0 and that the agent chooses a before 0 is known.5 In
 this case (constrained) Pareto-optimal sharing rules s(x) are generated by the
 program:

 max E{ G(x - s(x))} (1)
 s(x),a

 subject to E{ H(s(x),a)} - Hf, (2)

 a E argmax E{H(s(x),a')}, (3)
 a'eA

 where the notation "argmax" denotes the set of arguments that maximize the
 objective function that follows.6

 Constraint (2) guarantees the agent a minimum expected utility (attained via
 a market or negotiation process). Constraint (3) reflects the restriction that the
 principal can observe x but not a. If he also could observe a, a forcing contract
 could be used to guarantee that the agent selects a proper action even when s(x)
 is chosen to solve (1)-(2) ignoring (3). The latter we will refer to as thefirst-
 best solution, which entails optimal risk sharing. It differs in general from the
 solution of (1) subject to (2) and (3), which we call a second-best solution.

 Two approaches can be used to solve the program above. The earlier one,
 used by Spence and Zeckhauser (1971), Ross (1973), and Harris and Raviv
 (1976), recognizes explicitly the dependence of x on a and 0, so that the
 expectations in (1)-(3) are taken with respect to the distribution of 0. They
 proceed to characterize an optimal solution by replacing (3) with the first-order
 constraint E{H s' sXa + H2} = 0, and then apply the calculus of variations.
 To validate these steps one has to assume that an optimum exists and is
 differentiable. However, as an example by Mirrlees (1974) shows, there may
 commonly exist no optimal solution among the class of unbounded sharing
 rules, and for this reason s(x) has to be restricted to a finite interval in general.
 As a result, the solution will become nondifferentiable and the above-mentioned
 approach can no longer be applied.7

 4 Subscripts denote partial derivatives with respect to corresponding variables.
 5 This assumption corresponds to model 1 in Harris and Raviv (1976), which is the model they

 use for studying imperfect information. We shall relax it in Section 6.
 6 As usual, E denotes the expectation operator. Since E{H(s(x),a)} need not be concave

 in a, there may exist multiple solutions, hence the inclusion symbol.
 7 Even when an optimal solution exists among unbounded sharing rules, it may be nondiffer-

 entiable. This has been observed by Gijesdal (1976). To illustrate his ideas one can look at the follow-
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 A better approach to solving (1)-(3), which also gives a more intuitive
 characterization of an optimum, has been introduced by Mirrlees (1974, 1976).
 He suppresses 0 and views x as a random variable with a distribution F(x,a),
 parameterized by the agent's action. Given a distribution of 0, F(x, a) is simply
 the distribution induced on x via the relationship x = x(a, 0).8 It is easy to see
 that xa > 0 implies Fa(x, a) < O. It will be assumed that for every a, Fa(x, a) < 0
 for some x-values, so that a change in a has a nontrivial effect on the distribu-
 tion of x. In particular, it will shift the distribution of x to the right in the sense
 of first-order stochastic dominance.

 For the moment, assume F has a density function f(x,a) with fa and fa
 well defined for all (x,a).9 Replacing (3) with a first-order constraint yields
 the program:

 s(x)E[c,d+x],a G(x - s(x))f(x,a)dx (4)

 subject to I [U(s(x)) - V(a)]f(x,a)dx H, (5)

 U(s(x))fa(x,a)dx = V'(a). (6)

 Note that s(x) is restricted to lie in the interval [c, d + x] to avoid nonexistence
 of a solution.10 This restriction is natural from a pragmatic point of view as well,
 since the agent's wealth puts a lower bound, and the principal's wealth
 (augmented with x) an upper bound on s(x).

 Let X be the multiplier for (5) and tx the multiplier for (6). Pointwise
 optimization of the Lagrangian yields the following characterization of an
 optimal sharing rule:

 G'(x - s(x)) fa(x,a) ( = h + ux , (7)
 U'(s(x)) f(x,a)

 ing insightful example. Let x(a,z) = a + z and z - Unif(0,1), so that x - Unif(a,a + 1). If
 (a*,s*(x)) is a first-best solution it is easy to see that a contract of the form s(x) = s*(x) when
 x > a*, s(x) = w otherwise, will make the agent choose a = a* for w sufficiently low. But in that
 case x 2 a* for all outcomes of 2, and the first-best solution s(x) = s*(x) is effectively realized.
 In other words, a nondifferentiable sharing rule, which penalizes the agent for outcomes x < a*,
 will give both the principal and the agent the same expected utility as a first-best solution. In this
 example no optimal differentiable sharing rule exists for (1)-(3).

 Gjesdal's analysis shows that both Spence and Zeckhauser (1971, p. 383, footnote 5) and
 Harris and Raviv (1976, pp. 36-37) err in giving incorrect characterizations (based on the Euler
 equation) for examples similar to this.

 We will avoid situations like these by essentially assuming that the support of the distribution
 of x will not change with a, as explained below. For a more detailed comparison of the state-space
 approach with Mirrlees' approach, see Holmstr6m (1977).

 8 Thus, it is always possible to go from the state space approach to Mirrlees' approach, while
 the reverse is not always true.

 9 In Section 3 we shall allow discrete distributions as well. The crucial assumption is thatfa
 exists. Note that this assumption is not satisfied by the example in footnote 7.

 10 More precisely, existence of a solution to (1)-(3) can be proved for the class of functions:

 SK {s(x) E [c,d + x] Vb\'(s) < K (b' -b)},

 where Vb' (s) is the total variation of s in the interval [b,b'] (Kolmogorov and Fomin, 1970),
 under some technical assumptions about integrability and the behavioral assumption that the agent,
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 for almost every x for which (7) has a solution s(x) E [c, d + x]; otherwise
 s(x) = c or d + x, depending on whether the right-hand side X left-hand side
 throughout the interval. Furthermore, tu is given as the solution to the adjoint
 equation,

 G(x - s(x))fa(x,a)dx + t U(s(x))faa(x,a)dx - V(a) = 0, (8)

 and a is determined by (6).11
 From Borch's (1962) work, we know that s(x) will be Pareto optimal from a

 risk-sharing point of view only if the right-hand side in (7) is constant. Now,
 falf = k, aconstant, implies 0 = f fa = f f k = k, since f f= 1 foralla. Hence,
 fa = 0 would follow, which contradicts the assumption that Fa < 0 for some x.
 Consequently, perfect risk sharing could only obtain if /L = 0. But, in fact, one
 can prove the following:12

 Proposition 1. Assume V' > 0 and F,a < 0 (with strict inequality for some x-
 values), then tL > 0, or equivalently: The principal would like to see the agent
 increase his effort given the second-best sharing rule.

 Proof: See Appendix.

 Two immediate corollaries follow:

 Corollary 1. Under the assumption of Proposition 1, one has the following
 relationship between the second-best solution s(x) and the first-best solution
 sx(x), for a given X:

 {s(x) - Sx(X), on X+ = {x fa(x,a) > 0},
 (9)

 s(x) < s (X), on X_ = {x lfa(x,a) < 0}.
 Proof: See Appendix.

 Corollary 2. Under the assumption of Proposition 1, the second-best solution is
 strictly inferior to a first-best solution.13

 Proof: See Appendix.

 in case he is indifferent, chooses his action according to the principal's preferences. By taking K
 large enough, the characterization in (6)-(8) will be valid for this solution, and SK will contain
 all functions of practical relevance.

 " The characterization can be proved rigorously as in Holmstrom (1977) using proposition
 9.6.1 in Luenberger (1969). Some technical assumptions which we do not spell out are needed.
 More important is the fact that one has to assume that the agent's optimal choice of action is unique
 for the optimal s(x). This assumption seems very difficult to validate except in specific problems
 and regrettably we have to leave the question about its validity open.

 Mirrlees (1974) was the first to give a characterization of an optimum in the form above (without
 bounds). Earlier Spence and Zeckhauser (1971) and Ross (1973) gave alternative characterizations
 based on the state space formulation.

 12 This proposition generalizes Mirrlees' (1976) conclusion that ,u > 0 when fa/f is increas-
 ing in x.

 13 It is worthwhile stressing the difference between Corollary 2 and the example in footnote 7.
 A first-best solution can be achieved in that example because fa does not exist at the endpoints
 of the uniform distribution. Whenever f, exists, Corollary 2 indicates that a first-best solution
 cannot be achieved. Also, note that V' > 0 is essential. The role played by V in the characterization
 is obscured by the complexity of the relationships between (6)-(8), but generally one expects
 that the larger V" is, the smaller is It and the accompanying welfare loss. At an extreme, if V' = 0 for
 a - a and V' = oo for a > d then the first-best outcome can be achieved since it entails a = a,
 which the agent will choose given an optimal risk-sharing rule.
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 The characterization in (7) has an intuitive interpretation in terms of de-
 viating from optimal risk sharing to provide incentives for increased effort on
 the part of the agent. This is accomplished by taking s(x) > sx(x) when the
 marginal return from effort is positive to the agent, and s(x) < sx(x) when it
 is negative (see Corollary 1). The incentive effect of deviating from optimal
 risk sharing is stronger the larger is Ifa , and it is more costly (in terms of lost
 risk-sharing benefits) the greater isf. Thus fa I If may be interpreted as a benefit-
 cost ratio for deviation from optimal risk sharing, and (7) states that such
 deviations should be made in proportion to this ratio, with individual risk
 aversion taken into account.

 In contrast to perfect risk sharing, the second-best solution is crucially
 dependent on the distribution of x and its functional relation to a. This occurs
 because the outcome x can be used as a signal about the action which is not
 directly observed. We note thatfa/f is the derivative of the maximum likelihood
 function logf, when a is viewed as an unknown parameter. In this sensefa/f
 measures how strongly one is inclined to infer from x that the agent did not take
 the assumed action, and (7) says that penalties or bonuses (as expressed by
 deviations from first-best risk sharing) should be paid in proportion to this
 measure. 14

 The deviation from perfect risk sharing implies that the agent is forced to
 carry excess responsibility for the outcome and this points to the implicit
 costs involved in contracting under imperfect information (Corollary 2). Con-
 sequently, there are positive gains to observing the agent's action, since in
 that case a first-best solution can be achieved by using a forcing contract. This
 provides the basis for discussing ways to realize part of these gains by using
 imperfect monitoring, which is the subject of Sections 4 and 5.

 To illustrate the formula in (7) and the interpretations, consider the follow-
 ing example: G(w) = w, U(w) = 2/w, V(a) = a2, x exp (l/a). In this
 example, the agent could be a machine repairman, whose effort a will determine
 the expected time before the machine will break down. The monetary return
 x is proportional to the length of time the machine will remain operative; (here
 the proportionality factor has been taken = 1).

 From (7), the optimal share is:15

 s(x) = L + ' (x a)]2 (10)
 a

 and some simple calculations yield Au = a3, and the equation 4a3 + 2X a = 1 for
 a (using (6) and (8)). As one would expect, u is increasing in a, since it is more
 costly to induce higher effort. The first-best solution is sx(x) = X2, ax = 1/2X.16

 For a numerical solution let h = /2. Then s(x) = 4(x + 1/)2, a = /2,

 s (x) = 1/4, ax = 1, as pictured below. The welfare measure for the first-best
 solution is 3/4 and for the second-best it is 9/16. (See Figure 1.) In this example,

 14 Of course, this interpretation is not quite accurate, since given s(x), the principal knows
 from (4) what action a rational agent will take according to the model. But I think this interpretation
 corresponds well with reasoning in practice.

 15 This is an exceptional example in that no bounds need to be imposed on the sharing rule,
 and an explicit solution can thus be obtained.

 16 In this example the question of uniqueness, referred to in footnote 11, is no problem.
 For any fixed a, (10) gives the appropriate solution to (4)-(6), which is a relaxation of (1)-(3)
 when a is fixed at its optimal value. But it is easily checked that s(x) in (10) makes (6) strictly
 concave in a, and hence the relaxed problem also solves the original one.



 80 / THE BELL JOURNAL OF ECONOMICS

 FIGURE 1

 THE SECOND-BEST SOLUTION FOR THE REPAIRMAN EXAMPLE WITHOUT MONITORING
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 the penalties imposed on the agent for x < /2, which is the mean of x, are rela-
 tively small owing to the high values off(x,/2) in this region (and, of course,
 owing to risk aversion), and bonuses for x > 2 are correspondingly large. In
 view of risk-sharing benefits, the convexity of the second-best solution may be
 surprising, but this is in no way exceptional (cf. Mirrlees (1976); also in Wilson
 (1969), convex sharing rules may be optimal). Examples for which sharing rules
 are concave or linear or even two-peaked can be easily generated as well.

 3. Deductibles in insurance

 * The characterization in (7) can be applied to the insurance setting to con-
 clude that optimal accident insurance policies necessarily entail deductibles
 in the presence of moral hazard. To demonstrate this, the assumption that the
 distribution F(x,a) possesses a density function will be relaxed. Since (7) is
 derived via point-wise optimization, a mixture of a continuous and discrete
 distribution can be used as well, provided the support of the discrete distribution
 is left unchanged by the action (cf. footnote 7). In that case simply interpret
 f(x,a) in (7) as the probability mass rather than the value of the density func-
 tion whenever x is a mass point (and correspondingly forfa andfaa, which both
 are assumed to exist as before).

 Mixed distributions are characteristic in accident insurance. First, there is
 a probability that no accident occurs and this generates a mass point at x = 0;
 and conditional on an accident, there is a damage distribution overx < 0, which
 usually can be assumed continuous. If a represents a precautionary action, it
 is natural to assume that this mixed distribution satisfies:

 fa(O,a) > 0,fa(x,a) < 0.  (11)
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 This assumption says that the probability of an accident decreases with a so that
 each outcome x < 0 is less likely. For instance, driving a car more carefully will
 presumably decrease the probability of both small and large accidents.

 Because tL > 0 and the left-hand side in (7) is continuous, (11) clearly
 implies that the optimal sharing rule s(x) is discontinuous at x = 0. In fact,
 s(O) > sx(0) > s(x) for all x < 0, since G'(x - s(x))/(U'(s(x)) is increasing in
 s(x) and nonincreasing in x (here Sx is the solution to (7) with u = 0). If
 d = min,<0 {s(O) - s(x)} > 0, we can write:17

 s(x)=Ir ' ( if x = 0, (12) sk - d - t(x), if x < 0,
 where k is the agent's wealth after paying the premium, d is the deductible
 which is paid when an accident occurs, and t(x) > 0 is the agent's additional
 share in the costs of an accident. One would expect t(x) to be increasing in
 x. This is the case if, for instance, falf is increasing in x (which holds for
 surprisingly many standard distributions; see Holmstrom (1977)).

 In many situations it is approximately true that the agent's action will only
 affect the probability of an accident and not the size of losses, given that an
 accident occurs. In that case one can write f(0,a) = 1 - p(a), f(x,a) = p(a).
 g(x), x < 0, where p(a) is the probability of an accident (p' < 0) and g(x) is
 a damage distribution independent of a. This implies fa(O,a)/f(O,a) = -p'(a)l
 (1 - p(a)) > 0 andfa(x,a)/f(x,a) = p'(a)/p(a) < 0, forx < 0. Hencef,/f is inde-
 pendent ofx forx < 0, which means that forx < 0 we have first-best risk sharing.
 In particular, if the insurance company is risk-neutral, only a deductible will be
 charged when an accident occurs.

 To summarize the discussion we have:

 Proposition 2. Given the assumptions in (11), optimal accident insurance policies
 entail a deductible. If the insured's action only affects the probability of an
 accident but not the size of damage and the insurance company is risk-neutral,
 a deductible alone is optimal.

 This proposition lends additional support to the frequent use of deductibles
 in accident insurance. However, the reasoning is quite different from that behind
 the well-known proposition by Arrow (1970), which holds that pure deductibles
 are always optimal. Arrow does not consider moral hazard aspects, and in his
 case deductibles arise for instance if the firm uses loading to determine the
 premium (Mossin, 1968).

 4. Optimal sharing rules based on additional information
 * One of the main conclusions from Section 2 is that the optimal solution
 under moral hazard is not first-best and, hence, that there would be gains to
 observing the agent's action (see Corollary 2 and the subsequent discussion).
 Since perfect observation of the agent's action is generally precluded, interest
 centers on the use of imperfect information for improvements of the contract.
 This issue can be studied using a straightforward extension of the model in
 Section 2.

 17 If x can be observed only at the option of the insured, (12) is not enforceable. In that case,
 the optimal contract is s(x) = max (x,s(x)), with s(x) as in (12). This is still a contract with a deductible.
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 Lety be a signal (possibly vector-valued), which in addition tox, is observed
 by both parties and hence can be used in constructing the sharing rule. Let
 F(x,y,a) be the joint distribution ofx and y given a. As in Section 3, letf(x,y,a)
 be either the value of the density function of the continuous part of F or the
 probability mass of the mass point (x,y), if such exists. As before,fa andfaa are
 assumed to exist. The following extension of (7) obtains for an optimal sharing
 rule s(x,y):

 G'(x - s(x,y)) fa(x,y,a)
 = X + u ' , (13)

 U'(s(x,y)) f(x,y,a)

 for almost every (x,y) such that (13) has a solution s(x,y) E [c, d + x]; otherwise
 s(x,y) = c or d + x depending on whether the right-hand side Z the left-hand
 side throughout the interval. Here tA is the multiplier of the agent's first-order
 constraint and satisfies (8) and a satisfies (6) (with obvious changes in notation).

 Again tu > 0 follows as in Proposition 1, and consequently the second-
 best solution s(x,y) will be strictly worse than a first-best solution.18 The inter-
 pretation offaf in Section 2 can be repeated for (13). A new, important feature,
 however, is thatfa(x,y,a)/f(x,y,a) may change withy. Thus, for the same value
 ofx, but under different contingencies signalled by y, the agent should generally
 receive different remuneration. In particular, if for one value ofy it is possible to
 infer less about a via x, then the deviation from optimal risk sharing should
 be smaller, and vice versa. At an extreme, a realization of the signal y could be
 such thatfa(x,y,a) 0 for all x (which means that nothing about the action can
 be inferred from the payoff), and in this case the optimal risk-sharing rule should
 be employed. In sharecropping, for example, if a natural disaster destroys the
 crop, farm workers should not be held responsible for the outcome (beyond
 optimal risk sharing).

 This is quite intuitive and corresponds well with observed practice. Equa-
 tion (13) would predict that contracts are elaborate and contain a variety of
 provisions for unexpected events. Certainly, there is substantial empirical
 support for this conclusion. Contracts, at least between external parties, tend to
 be detailed, spelling out different responsibilities in different contingencies
 (e.g., strikes, accidents, natural disasters, etc.). Not doing so would be in-
 efficient and add to the implicit costs of contracting. In the same way managers
 are not held responsible for events one can observe are outside their control,
 and implicitly at least, their performance is always judged against information
 about what should be achievable given, say, the current economic situation.19

 To illustrate the point we can look at an extension of the example in Sec-
 tion 2. Suppose now that the machine can also break down because of a failure
 in a component over which the repairman has no control. Let this event have
 an exponential probability distribution with constant parameter (1/k), and
 assume it is independent of the event that the components which the repairman
 controls will break down. The latter event still has the same probability distribu-
 tion as before, namely exponential with parameter (l/a).

 18 As in Section 2, this result depends crucially on the assumption thatfa exists for all (x,y,a);
 cf. footnote 13.

 19 Note, however, that internal labor contracts rarely contain explicit reference to monitoring
 information, and presumably this information is often unknown to the agent. Yet such information
 is and should be used. The reason the principal (i.e., the firm) will not default on such an implicit
 contract is its concern for reputation in the labor market.
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 If it is not possible to determine whether the failure occurred in a com-
 ponent outside the repairman's control, the optimal solution is to employ a
 sharing rule:

 s(x) = (+ - a kk I (14)
 This follows from (7), since x - exp ((a + k)lak).

 On the other hand, if one can determine which component failed, this
 information can be used to improve the contract. Set y = 1 if the failure was
 outside the repairman's control andy = 0 otherwise. Employing (13), one has:20

 s(x,0) = + tk2 -- a ,
 a2 a (15)

 s(x,1) = X + /2

 Here , = a3(1 + (a/k))2, 2 = a3(1 + (a/k)) from (6). Hence, tI > /2,
 indicating that it is more costly to induce a particular action a when y cannot
 be observed.

 The interesting comparison is between s(x,0) and s(x, 1). One can see that
 s(x,0) is a translation of s(x, 1) to the right as indicated in Figure 2. Confirming
 our intuition, the repairman receives higher pay if it is found that the failure
 was outside his control than if it is found that a component that he controls failed.
 The optimal solution when y is not observed will lie initially between s(x,0)
 and s(x,1) and eventually go above s(x,1), since /i > /2. Notice that as
 k -> oo, s(x) -> s(x,0), since it becomes all the less likely that the failure will be
 caused by anything outside the repairman's control.

 5. Value of information

 * Before proceeding with a discussion of the value of imperfect information,
 the notion of a valuable signal needs to be made precise. A signal y is said to be
 valuable if both the principal and the agent can be made strictly better off with
 a contract of the form s(x,y) than they are with a contract of the form s(x).

 Equation (13) suggests that y will be valuable if and only if it isfalse that

 fa(x,y,a) ,
 f = h(x,a) , (16) f(x,y,a)

 for almost every (x,y). The reason is that when (16) holds, a contract s(x)
 will satisfy (13), whereas if (16) is false, it must necessarily take the form
 s(x,y). We shall prove this proposition formally below as it is the main result
 of the paper and no proof of (13) was given. Before doing so, let us rewrite (16)
 in a way which allows a surprisingly simple interpretation of this necessary

 20 Simple calculations show that

 f(x,O,a) = 1exp a+k x
 a ak

 and

 f,,a),1 f a + k f(x,l,a) = - exp - x
 k ak J
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 FIGURE 2

 THE SECOND-BEST SOLUTION FOR THE REPAIRMAN EXAMPLE WITH MONITORING
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 and sufficient condition. Suppose (16) holds for all a. Solving it as a differential
 equation in a yields

 f(x,y; a) = g(x,y) h(x,a), for almost every (x,y), (17)

 where h and g can be taken nonnegative. Conversely, (17) implies (16). Thus
 (16) and (17) are equivalent.21

 Equation (17) has a natural interpretation, since it is precisely the condition
 for a sufficient statistic, if one views a as a random parameter (de Groot, 1970).
 That is, when (17) holds, x is a sufficient statistic for the pair (x,y) with respect
 to a, which means that x carries all the relevant information about a, and y adds
 nothing to the power of inference. The signal y could only be used for risk-
 sharing purposes, but optimal risk sharing is independent of the distribution of
 the random variables when agents have homogeneous beliefs. Consequently,
 y should be valueless when (17) holds, which is what (13) says. On the other hand,
 when (17) is false, y contains some information about a beyond that conveyed
 by x. In accordance with (13), y should then be used in the contract to improve
 welfare.

 This discussion suggests the following:

 Definition: A signal y is said to be informative about a when (17) is false, and
 noninformative otherwise.

 With this definition the main result can be stated as follows:

 Proposition 3. Let s(x) be an optimal sharing rule for which the agent's choice
 of action is unique and interior in A. Then there exists a sharing rule s(x,y)
 which strictly Pareto dominates s(x) if and only if (17) is false; or more concisely,
 a signal is valuable if and only if it is informative.

 21 This is not necessarily true if (16) only holds for a single value of a, because then we cannot
 integrate (16) to get (17). Such an exceptional case is of little interest, however, and in the subse-
 quent analysis, we will only deal with distributions for which (16) is true for either all a or no a.
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 Proof: Suppose y is noninformative. Then, if s(x,y) is an arbitrary sharing rule,
 a sharing rule s(x) which is at least as good as s(x,y) will be constructed,
 establishing the claim that y is of no value.

 For every x, define s(x) so that

 U(s(x,y))g(x,y)dy = f U(s(x))g(x,y)dy

 = U(s(x)) |g(x,y)dy. (18)

 Then using (17) and (18),

 {U(s(x,y))f(x,y; a)dxdy = U(s(x,y))h(x; a)g(x,y)dxdy

 = U(s(x))h(x; a)g(x,y)dxdy.

 Consequently, s(x) will result in the same action and welfare for the agent.
 By Jensen's inequality, (18) implies

 s(x,y)g(x,y)dy f s(x)g(x,y)dy,

 or

 (x - s(x,y))g(x,y)dy (x - s(x))g(x,y)dy.

 This implies, using Jensen's inequality a second time, that:

 G(x -s(x,y))g(x,y)dy fG(x -s(x))g(x,y)dy.

 Since this is true for every x, and h(x; a) > 0, one obtains, by integrating,

 G(x - s(x,y))f(x,y; a)dxdy f G(x - s(x))f(x,y; a)dxdy.

 Since the agent takes the same act with s(x) as with s(x,y) by construction,
 this shows that the principal is at least as well off with s(x) as with s(x,y). The
 agent's utility is the same for both s(x) and s(x,y), and thus s(x) is weakly
 Pareto superior to s(x,y), which proves the first part of the proposition.

 To prove the second part, let s(x) be a second-best solution with the properties
 assumed in the proposition. Fix x for a moment. Since the agent's response is
 unique and interior in A, the principal's and the agent's marginal returns 8EP-
 and 8EA-conditional on x, from an additive variation 8s(x ,y) in the sharing rule
 s(x), are [see proposition 9.6.1 in Luenberger (1969)]:

 8EP = -G'(x - s(x)) t8s(x,y)f(x,y; a)dy + I U'(s(x)) 8s(x,y)fa(x,y;a)dy,

 8EA = U'(s(x)) f 8s(x,y)f(x,y; a)dy. (19)

 Here ,u is the solution to (8) corresponding to s(x).
 Suppose y is informative. From (16) it follows that there exists a set Y in
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 the range of y, with fyf(x,y; a)dy -f(x, Y; a) : 0, and correspondingly for
 the complement yc, such that:

 fa(x, Y; f (x a) f(20)
 f(x,Y; a) f(x, Y; a)

 Choose a variation 8s(x,y) such that 8s(x, Y) > 0 and

 s(x, Y)f(x, Y; a) + 8s(x, YC)f(x, c; a) = 0; (21)

 (8s(x, Y) is constant for ally E Y and correspondingly for 8s(x, yc)). From (19)
 and (21) it follows that:

 8EP = /'U'(s(x))[8s(x,Y) fa(x,Y; a) + 8s(x, Y) fa(x,YC; a)],
 and

 8EA = 0.

 Substituting from (21), we have:

 f(x, Y; a) f(x, yc; a)
 6Ee = pzU'(s(x))'Ss(x,Y)f(x,Y; a)[f(x,y; a) f(x,yc; a ) > O,

 since /u > 0 (Proposition 1), 8s(x, Y) > 0 as chosen, and the expression in
 brackets is positive by (20). The procedure can be repeated for a set ofx-values
 with positive mass, since y is informative, which guarantees that one can make
 the principal strictly better off and the agent no worse off, for a small enough
 variation. Finally, utilities are continuous, so part of the principal's gain can be
 transferred to the agent (e.g., use the same argument as above, taking 8EP = 0),
 and this proves the sufficiency part of the proposition. Q.E.D.

 Remarks:

 (1) The sufficiency argument can be appropriately modified to apply to the case
 where the agent's utility function H is nonseparable.
 (2) If, for administrative reasons, one has restricted attention a priori to a
 limited class of contracts (e.g., linear price functions or instruction-like step-
 functions), then informativeness may not be sufficient for improvements within
 this class.

 (3) From the proof of the proposition one can see that iffa/f is continuous in
 (x,y), then there will exist a single region Y (independent of x) such that the
 indicator function on Y is a valuable signal whenevery is.22 This implies that s(x)
 can be improved upon by a dichotomous contract of the form (s(x, Y),s(x, yC)),
 which does not use all the information contained in y. Since dichotomous
 contracts are simpler to administer, this result suggests an explanation of their
 frequent use.
 (4) It is clear that informativeness can be directly extended to cover cases where
 one already observes a signal y, in addition to x and is interested in the value
 of an additional signal y2. The necessary and sufficient condition becomes
 f(x,yl,y2,a) / h(X,yl,a).g(x,yl,Y2).

 The conclusion that a noninformative signal will have no value may not be
 surprising (even if our terminology is chosen to make this statement appear more

 22 The indicator function on Y is a function which has the signal y as an argument, and equals
 1 on Y and 0 otherwise.
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 obvious than it is). Basically, it tells us that pure randomization does not pay.
 The more important part of the proposition is the result that any informative
 signal, regardless of how noisy it is, will have positive value (if costlessly
 obtained and administered into the contract). As in Harris and Raviv (1978), one
 might conjecture that in some situations a sufficiently noisy, yet informative,
 signal would add too much randomness to the contract to be acceptable by risk-
 averse parties. But as the proof of Proposition 3 indicates, since both parties are
 on the margin risk-neutral towards randomness in y, given x, the new contract
 can be designed so that marginally it does not increase risk, but still improves
 incentives for action.23 Alternatively, equation (13) indicates that one can improve
 risk sharing for each y separately while at the same time retaining incentives for
 action. This pointwise improvement results, of course, in an overall improvement.

 It is of interest to look at a few special cases of informativeness. Suppose
 first that y is independent of x. This could be the case if the agent is directly
 monitored or supervised. Then we can write

 f(x,y,a) = h(x,a).g(y,a).

 From this it follows that

 fa(x,y,a) h ha(x,a) +ga(y,a)

 f(x,y,a) h(x,a) g(y,a)

 Hence y is noninformative if and only if ga/g is constant, which readily is seen
 to imply ga 0 (since f ga = 0). Thus, whenever g depends at all on a, it is
 informative and consequently valuable. Even the most casual supervision of
 an agent can be used to the benefit of both parties.

 Second, suppose y is informative. Then we can construct another informa-
 tion system as follows:

 y, if x < x,

 0, if x>x.

 This signal is a conditional information system, where resources are invested
 to find out y only if the outcome is sufficiently bad (below x). It is readily seen
 that y is also informative and, depending on the costs of obtaining y, the net
 benefits of using y may exceed those ofy.24 Conditional information systems are
 widely used in practice, which indicates that their cost savings are often suf-
 ficient to cover the information loss they engender.

 Finally, one can construct an informative signal from y by simply deciding
 randomly whether or not to find out y.25 Again, this would save costs and is
 quite effective, particularly if y is a very precise signal about a 26

 The last two examples bring attention to the fact that Proposition 3 says
 nothing about how valuable y is, which would be important whenever costs for
 information acquisition and administration of more complex contracts are con-
 sidered. An upper bound for the value is, of course, provided by the value one

 23 This line of argument was first used in Gjesdal (1976) for the case where x and y are inde-
 pendent. It has also been used by Shavell (1978), who independently of us proves the sufficiency
 part of Proposition 3, but without employing the same notion of informativeness.

 24 Demski and Feltham (1978) discuss conditional information systems.
 25 Feltham (1977) gives an example of this kind of information system.
 26 In the limit, ify = a and high penalties are allowed, we are very much in the same situation

 as in the example in footnote 7. An arbitrary low probability of checking y will suffice to induce the
 agent to take the correct action.
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 gets from observing a itself. As Mirrlees' (1974) example (p. 248) indicates, this
 value may occasionally be negligible.

 Some indications of the value of the signal can be found by studying (13).
 Roughly speaking, the more variation a signal causes infa/f, the more valuable
 it will be. This seems difficult to formalize, and I believe that on a general
 level signals can only be compared by using Blackwell's notion of fineness
 (see Blackwell (1951) and also remark 4 above).

 6. Asymmetric information
 * In many respects the model we have analyzed is very primitive. One
 unrealistic feature is the assumption that the agent chooses his action having
 the same information as the principal, that is, before anything about 0 is re-
 vealed. Commonly this will not be the case. After the sharing rule is fixed, the
 agent will often learn something new about the difficulty of his task or the
 environment in which it is to be performed. The following extension of our
 model applies to such cases.27

 Let z be a signal about 0 which the agent observes prior to choosing a,
 so that his choice becomes a function a(z). As before, we suppress 0 and write
 f(x ,y ,z ,a) for the joint density function, where y is some additional information
 observed by both parties. The best sharing rule s(x,y) can be determined by
 solving the program:

 max G(x - s(x,y))f(x,yf(,y z,a(z))p(z)dxdydz (22)
 s(x,y),a(z)

 subject to U(s(x,y))f(x,y I z,a(z))p(z)dxdydz

 - V(a(z))p(z)dz > H, (23)

 a(z) E argmax f U(s(x,y))f(x,y z,a')dxdy - V(a'),Vz. (24)
 a'EA

 Here f(x,y z,a) is the conditional density of x and y, given z and the action
 a, and p(z) is the marginal density of z. Letting ,u(z)p(z) be the multiplier func-
 tion for (24) and h the multiplier for (23), point-wise optimization gives the
 characterization:

 G'(x - s(x,y)) t(z)'fa(x,y z,a(z))p(z)dz
 = X + (25)

 U'(s(x,y)) \f(x,y iz,a(z))p(z)dz

 This equation closely resembles equation (13). Again the second term on the
 right-hand side indicates deviations from a first-best solution, and qualitatively
 one can draw conclusions similar to those for the earlier model. The difference

 is that the deviation from first-best risk sharing is determined by a weighted
 average of the incentive effects in the various states z, with the weight uz(z)p(z)
 being dependent on the probability of z and the desirability (or cost) of forcing

 27 This corresponds to Model 2 in Harris and Raviv (1976).
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 the action a(z). It is easy to show that Iu(z) 0 is impossible (since ,i(z) is
 determined by an equation similar to (8)), and hence again we have a second-best
 solution. However, we may have ,(z) > 0 for some z, and Iu(z) < 0 for others,
 since s'(x) > 1 is possible (cf. our repairman example) in some x-region.

 The necessary part of Proposition 3, namely that a noninformative signal is
 valueless, extends readily to the asymmetric case. Here noninformativeness is
 defined by the condition:

 f(x,y,z; a) = g(x,y).h(x,z; a), for almost every (x,y,z). (26)

 For the sufficiency part of the proposition, an additional but insignificant
 qualification is needed. When (26) is false, that is, wheny is informative,f,/fwill
 depend on y as before. Yet, when integrating as in (25), it is conceivable that
 the right-hand side of (25) would become independent of y, making a function
 s(x) optimal and y valueless. However, this is extremely unlikely and will not
 happen generically; any small change in the problem data would take us out of
 such a situation. Thus, we can safely say that for all that matters, Proposition
 3 is also valid in the asymmetric case.

 7. Concluding remarks
 * We have studied efficient contractual agreements in a principal-agent rela-
 tionship under various assumptions about what can be observed, and hence
 contracted upon, by both parties. When the payoff alone is observable, optimal
 contracts will be second-best owing to a problem of moral hazard. By creating
 additional information systems (as in cost accounting, for instance), or by using
 other available information about the agent's action or the state of nature,
 contracts can generally be improved. A simple necessary and sufficient condi-
 tion for such imperfect information to be of value was given as well as a
 characterization of optimal contracts which use such information.

 Principal-agent relationships are prevalent in economic organizations. The
 analysis presented here improves our understanding of the functioning of this
 basic organizational form. In view of our result that essentially any imperfect
 information about actions or states of nature28 can be used to improve contracts,
 we have an explanation of the observed complexity of real contracts (as
 evidenced for instance in insurance arrangements). Additional information is
 of value because it allows a more accurate judgment of the performance of the
 agent; or viewed differently, it provides the same incentives for effort with less
 loss of risk-sharing benefits.

 Our analysis also provides a basis for studying the design of contracts and
 information systems in more specific contexts. An application of this kind has
 recently been given by Baron and De Bondt (1978) in the context of automatic
 fuel adjustment clauses. Other fields of applications have been discussed in
 Harris and Raviv (1978) and recently Demski (1977) has used the model for a
 theoretical study of financial reporting.

 Of course, the analysis presented here leaves unanswered many interesting
 questions in contracting. One important aspect of the problem, which we have

 28 Note that our analysis shows that from a theoretical point of view there is no distinction
 to be made between a signal which provides information about actions and one which provides
 information about states of nature, since these pieces of information are inherently linked via the
 outcome function.
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 not considered, is that many contracts are based on long-term relationships.
 When the same situation repeats itself over time, the effects of uncertainty tend
 to be reduced and dysfunctional behavior is more accurately revealed, thus
 alleviating the problem of moral hazard. Such long-term effects could be
 analyzed in an extension of our model. Another extension would recognize
 that asymmetry of information as discussed in Section 6 may warrant a re-
 negotiation of the contract. One can view management by objectives and the
 New Soviet Incentive Scheme (Weitzman, 1976) as examples of this. In both
 cases, after observing the difficulty of his task, the agent can change the contract
 within certain limits to the benefit of both parties. A preliminary discussion of
 this kind of contracting is given in Holmstrbm (1977), where it is seen as a special
 case of delegation of decisionmaking responsibility to an agent with superior
 information.

 Appendix

 * Proof of proposition 1. Let s(x) be a second-best sharing rule for X > 0 and
 write r(x) = x - s(x). If ,u 0, contrary to our claim, then

 G'(r(x)) fa(x,a) G'(rx(x))
 = A + iL' < h = , (A1)

 U'(x - r(x)) f(x,a) U'(x - rx(x))

 for x E X+ = {x Ifa(x,a) > 0}. Here rx(x) is the first-best sharing rule (in terms
 of the principal's share), corresponding to X; see Wilson (1968). Since G'(r(x))l
 U'(x - r(x)) is decreasing in r(x) for fixed x, rx(x) is an increasing function,
 and from (Al) it follows that r(x) > rx(x) for x E X+.

 Correspondingly, r(x) < rx(x) on X_ = {x Ifa(x,a) < 0}. We have then,

 f G(r(x))fa(x,a)dx > G(r(x))fa(x,a)dx > 0, (A2)

 where the last inequality follows, by first-order stochastic dominance, from
 the assumption Fa(x,a) < 0 (with strict inequality for some x), and the fact that
 rx(x) is increasing.

 The expression in braces in equation (8) is the second-order condition for
 the agent's maximization problem, and hence is <0. (It cannot be =0, since then
 (A2) and (8) would be inconsistent). Combining (8) and (A2), this implies
 uL > 0, which contradicts our contrapositive assumption ,u 0. We have arrived
 at a contradiction assuming <u - 0 and conclude that u > 0. Q.E.D.

 [ Proof of corollary 1. The proof follows from Proposition 1 and the fact that
 G'(x - s(x))lU'(s(x)) is increasing in s(x) for fixed x. Q.E.D.

 D Proof of corollary 2. The solutions will differ on a set of nonzero measure,
 since u > 0 andfa/f is nonconstant. Q.E.D.
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