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 Suppose that a forecaster sequentially assigns probabil-
 ities to events. He is well calibrated if, for example, of
 those events to which he assigns a probability 30 percent,
 the long-run proportion that actually occurs turns out to
 be 30 percent. We prove a theorem to the effect that a

 coherent Bayesian expects to be well calibrated, and con-
 sider its destructive implications for the theory of
 coherence.
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 1. INTRODUCTION

 Subjective probability forecasting is now well estab-
 lished among meteorologists, particularly in the United
 States (Murphy and Winkler 1977). Weather forecasters
 routinely make predictions such as "the precipitation
 probability for Denver today is 30 percent"; they have
 also experimented with credible interval temperature
 forecasts of the form "the probability is 75 percent that
 today's maximum temperature in Denver will be between
 63? and 67?F." The probabilities quoted refer to the fore-
 casters' subjective "degree of belief," given their infor-
 mation at the time of the forecast. This information may
 include the "objective forecast" output from a climato-
 logical analysis, or a computer forecasting system; how-
 ever, no explicit modeling process need be involved in

 arriving at forecast probabilities.
 Such probability forecasting fits neatly into the general

 Bayesian world-view as conceived by de Finetti (1975).
 The coherent subjectivist Bayesian can be shown to have
 a joint probability distribution over all conceivably ob-
 servable quantities. Forecasting then is merely a matter
 of summarizing the conditional distribution of quantities
 still unobserved, given current information. In this article
 we shall, for definiteness, talk mainly in terms of weather
 forecasting, but it should be understood that the scope
 of the discussion is much wider, taking in all applications
 in which a subjectivist makes repeated probability fore-
 casts. For added definiteness, and with the usual non-
 sexist understanding, we shall refer to the forecaster in
 the masculine.

 Probability forecasts can be judged by several criteria
 (Murphy and Epstein 1967). In this article we concentrate
 exclusively on the criterion of calibration (sometimes
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 termed reliability). Suppose that, in a long (conceptually
 infinite) sequence of weather forecasts, we look at all
 those days for which the forecast probability of precipi-
 tation was, say, close to some given value X and (assum-
 ing these form an infinite sequence) determine the long-
 run proportion p of such days on which the forecast event
 (rain) in fact occurred. The plot of p against w is termed
 the forecaster's empirical calibration curve. If the curve
 is the diagonal, p = w, the forecaster may be termed
 (empirically) well calibrated. A parallel concept holds for
 credible interval forecasts: these are well calibrated if,
 for example, the long-run proportion of forecast 75 per-
 cent credible intervals that succeed in covering the actual
 value of the predicted quantity turns out to be 75 percent.

 The calibration criterion has some similarity with the
 frequency definition of probability, but does not require
 a background of repeated trials under constant condi-
 tions. In particular, it is rarely appropriate to interpret
 a subjective probability forecast as an estimate of some
 underlying "objective" probability; it is usually better
 considered as an estimate of (the indicator of) the forecast
 event itself. Thus we do not have to concern ourselves
 with the "true"' probability of rain on a given day. Rob-
 erts (1968) has attempted to interpret such a concept by
 supposing that one could select a subset of all days that
 could be regarded, at the time of forecast, as identical
 in all relevant respects, and consider the limiting relative
 frequency of rain on such days as the "true" probability
 for any one of them. However, it is doubtful whether
 such a selection is practically meaningful, or whether
 different forecasters would agree on it. The calibration
 approach avoids these difficulties.

 Murphy and Winkler (1977) show that experienced
 weather forecasters are, on the whole, well calibrated.
 Although this is not by itself a sufficient condition for
 their forecasts to be "good" (it would hold, for example,
 for a forecaster who invariably gave the long-term relative
 frequency of rain as his precipitation probability), it has
 often been taken to be a minimal desirable property. Fur-
 ther empirical studies of calibration have been reported
 by Lichtenstein, Fischhoff, and Phillips (1977), who ob-
 tain some poorly calibrated responses.

 A common suggestion (e.g., in Cox 1958) is that the
 probability statements of a poorly calibrated forecaster
 should be transformed before use. Thus, if a forecaster's
 empirical calibration curve at a quoted value of 30 percent
 has p = 20 percent, then the consumer of this forecast
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 might perhaps best assume that the "true probability"
 of rain is 20 percent. We shall not consider here the gen-
 eral problem of how to use someone else's forecasts; for
 this, see for example Morris (1974), and Lindley, Tver-
 sky, and Brown (1979).

 In this article, we investigate the forecaster's view of
 his own calibration, and show, in particular, that if he is
 coherent then he expects to be well calibrated. We also
 discuss the problems that this creates for the theory of
 coherence.

 2. INDEPENDENCE AND FEEDBACK

 Previous theoretical studies of the calibration property
 (Morris 1977; Harrison 1977) have mostly been concerned
 with the assessment of "seemingly unrelated" uncertain
 events or quantities: for example the height of the Eiffel
 Tower, the freezing point of mercury, the population of
 the USSR, and so on. It appears natural for the forecaster
 to regard such quantities as probabilistically indepen-
 dent. Supposing this, consider now the dilemma faced by
 such a forecaster who learns that of a very large number
 N of such forecasts that he has made 80 percent (say)
 exceed their assessed medians. This is an event whose
 subjective probability may be calculated from the binom-
 ial distribution with probability 2, and will be vanishingly
 small; yet it occurred. In the light of such a conflict, it
 might seem appropriate to borrow from the logic of sig-
 nificance testing and reject the basis for the probability
 assessments. The moral that Harrison (1977) draws is that
 the naive approach, in which "seemingly unrelated"
 quantities were regarded as subjectively independent, is
 unacceptable; assessments for such quantities are, in
 fact, related merely by virtue of the fact that they are
 being made by the same assessor. Defining,a potentially
 miscalibrated individual as one who is not sure whether
 his future subjective probability assignments will agree
 with observed frequency, Harrison goes so far as to con-
 clude that "such a person will never perceive two events
 as (probabilistically) independent."

 These investigations seem too specialized in contexts
 such as weather forecasting, where, for example, the cri-
 terion of "seeming unrelatedness" of precipitation for
 different days is clearly inapplicable. We shall follow a
 different path, taking advantage of the sequential nature
 of the weather forecaster's task. The forecaster does not
 operate by giving, on 31 December, his individual pre-
 cipitation forecasts for every day of the coming year, and
 then retiring: each day he forecasts for tomorrow,
 drawing on his accumulated experience of all that has
 passed up to today, including, in particular, the outcomes
 of those of today's events for which he supplied forecasts
 yesterday. It is such sequential forecasts with feedback
 that will form our principal subject of study.

 Our mathematical structure is as follows. Forecasts are
 made sequentially on days 0, 1, 2, . . . , each referring
 to events or quantities that will become known on the
 following day. We denote by Q1i the totality of events
 known to the forecaster on day i; thus QJO S QI, C.

 The forecaster has an arbitrary subjective probability

 distribution H defined over 2O = Vi=0 i. The proba-
 bility forecasts he makes on day i are for events or quan-

 tities in ~i,+1, and are calculated from his current con-
 ditional distribution H(- I Pi).

 With this formulation, the problem of the badly cali-
 brated forecaster is much more serious. For suppose Xi
 is a 1-measurable quantity (i = 1, 2, . . .), for example

 the maximum temperature in Denver on day i, and let mi
 be the median of the forecaster's distribution for Xi, as
 assessed on day i - 1. Let Si denote the event "Xi >
 mi". Then, by definition, H1(SiJ)i_ ) . Since i_1
 contains (SI, S2, . . ., Si- ), it readily follows that, ac-
 cording to H, H(Si) = 2 and the (Si) are independent (Pratt
 1962). Once again, we appear to have a conflict if, over
 many days, 80 percent, say, of the (Xi) exceed their as-
 sessed medians. However, the only assumption made
 above was that H be coherent, so that H obeys the laws
 of probability theory. That is, any coherent sequential
 forecaster must completely discount the possibility that
 he might be miscalibrated, however strong the evidence
 against him might be. In other words, in our sequential
 setup, Harrison's potentially miscalibrated individual
 cannot be coherent. We return to this point in Section 6.

 3. A GENERAL CALIBRATION THEOREM

 In this section we present a very general result that
 extends the above connections between coherence and
 calibration. Once again we suppose the forecasts are
 made sequentially according to a fixed probability dis-
 tribution H, but make no other assumptions.

 For each day i we have an arbitrary associated event
 Si E Qi, for example, the event of precipitation on day
 i. We denote the indicator of Si by Yi, and introduce Y,
 = H(Si I Ji- 1) = E( Yi I i- 1), the probability forecast
 of Si on day (i - 1).

 One way of comparing forecasts with reality is to pick
 out some fairly arbitrary test set of days, and in it compare
 (a) the proportion p of days whose associated events in
 fact occur with (b) the average forecast probability wr for
 those days. Formally, we introduce indicator variables

 tl, t2, * * *, at choice, to denote the inclusion of any
 particular day i in the test set: (i = 1 if day i is included,
 (i = 0 otherwise.

 We might choose the test set in advance, once and for

 all. However, it is a useful extension to allow the (ti)
 themselves to be determined sequentially; thus the de-
 cision on inclusion or exclusion of day i need only be
 made on day (i - 1), and then in an arbitrary way, in the
 light of knowledge available by day (i - 1). Formally, (i
 must be i- 1-measurable. Apart from this, no restriction
 whatsoever is placed on the selection of days into the
 test set. We call any such selection process admissible.

 Let

 k k k

 Vk E gi, Pk = Vk' E (iY,S = Vk' 1 g
 i=I1 i=1I i=l

 That is, restricting attention to those days up to day k
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 selected for inclusion in the test set, Vk is the number of
 such days, Pk the proportion for which the associated
 events in fact occur, and 'lk the average forecast prob-
 ability. Then we have the following result.

 Theorem. Let the selection process (ti) be admissible.
 With HI-probability one, if Vk X* oo then Pk - 7lk ?_ 0.

 The proof is given, with some extensions, in the Ap-
 pendix. Note that the result could not be true in general
 if we were to allow (i to depend on Yi, for then we could
 force Pk = 0, for example.

 4. APPLICATIONS

 4.1. Empirical Calibration

 Fix w E(0, 1), 8 > 0, and define tI = 1 if and only if

 i 1i - w I < 5. That is, our test set of days consists of
 just those for which the assessed probability of the as-
 sociated event is suitably close to w. This is admissible,
 since the condition determining (i can be decided on day
 (i - 1). For this choice, I Trk - w I C 8. It thus follows
 from the Theorem that, with HI-probability one, assuming
 the selection condition is satisfied infinitely often, Pk will
 be close to w for all sufficiently large k. That is to say,
 the coherent sequential forecaster believes that he will
 be empirically well calibrated.

 An extension of the preceding result is obtained on

 choosing (i = 1 when I 1i - Xw ' 8i, when 5i is possibly
 allowed to depend on information up to day (i - 1), and
 5i -> 0. The conclusion then is that, with H-probability
 one, if the sequence of selected days is infinite, Pk (D

 4.2 Variable Event Calibration

 At first sight, it seems that our Theorem does not cover

 the possibility that the event Si is itself sequentially se-
 lected by the forecaster. For example, if Xi is the maxi-
 mum temperature in Denver on day i, the forecaster may
 calculate his conditional distribution for Xi, given 9i- 1,
 and from it construct, say, some 75 percent credible in-
 terval Ai C R, taking Si = "Xi E Ai." But of course,
 even with this extension, the constructed Si belongs to
 1, so that the Theorem applies. In general, the only extra
 condition needed, satisfied in the above example, is that
 the determination of the variable event considered on day
 i shall be effected by day i.

 In this example, Yi-.75 by construction, whence SJTk
 --.75, and the Theorem entails the convergence of Pk to
 .75 with H1-probability one for any infinite admissible se-
 lection, and in particular for the whole sequence (ti-1).
 (Of course, this conclusion is already implicit in the ar-
 gument of Section 2, which shows that the (Si) behave,
 under H, as Bernoulli trials with probability .75.) Thus
 the coherent forecaster expects his sequential credible
 interval forecasts to be well calibrated.

 4.3 Model-Based Forecasts

 Consider now the special case in which it can be agreed
 that the data arise from some "objective," unknown

 probability distribution P. Suppose our forecaster pos-
 tulates a model "P E 2?," where 2? = {P0}, with 0 E 0,
 a subset of Rk. Suppose further that, for this model, 0 is
 consistently estimable. His distribution HI is now com-
 pletely specified by his prior distribution over 0; we sup-

 pose that this is full, in other words has support 0.
 Under weak regularity conditions, if indeed P E 2?, say

 P = P0o, his posterior distribution for 0 will (with P-prob-
 ability one) converge to the one-point distribution at Oo.
 This will be reflected in his probability forecasts, which
 will asymptotically approximate the "objective" proba-

 bilities under P0o, and so be well calibrated with P-prob-
 ability one, by our Theorem. Thus a full prior for a model
 that includes the true distribution P of the data will yield
 forecasts that will in fact, that is, under P, be (almost
 certainly) well calibrated. If the calibration property ap-
 pears to fail, then the whole model is discredited.

 As an example, suppose the forecaster postulates a

 Bernoulli model 2? = {P0}, where, according to Po, the
 { Yi} are independent with Po( Yi = 1) = 0. For definite-
 ness, take his full prior to be uniform on [0, 1]. If 2A only
 contains information on (Y,, . . . , Yn), his sequential
 probability forecast Yn+ l of Y, +I is

 K Yn + I = 1 I Y1, . . . , Yn) = (r + 1)1(n + 2),

 where r is the number of l's in the first n Y's. If now rln

 (and thus Yn) tends to a limit, X say, as n -x oo, then
 the forecasts will be empirically well calibrated (for only
 when w X do we get an infinite set of trials for which

 I Yn - w I C 8 on which calibration can be tested and
 could fail; but this set will contain all trials beyond some
 point, and so yield Pk w- ). But, when P E 9P, rln
 does, indeed, converge (with probability one).

 Now in this case, the preceding simple empirical cal-
 ibration criterion is a poor test of "P E gP," for, even if
 P { 9P, only for pathological P would rln not converge
 almost surely to a limit. One could, instead, use the gen-
 eral Theorem, selecting say only those trials i for which

 Yi- I = 1. When rln -A X, we again get 7lk A* X, so that
 these forecasts are well calibrated if and only if Pk A ,
 that is, the limiting relative frequency of l's is the same
 following a 1 as overall. This occurs with probability one
 for the Bernoulli model, but would fail, for example, if
 the sequence (Y,, Y2, . . .) followed a general Markov
 Chain.

 5. RECALIBRATION?

 Suppose that you have made a large number of prob-
 ability forecasts. On examining your empirical calibration
 curve, you find that it departs markedly from the diag-
 onal. Can you learn about your own inadequacies as a
 forecaster from this, and use this knowledge to improve
 future assessments?

 Various authors, for example Morris (1977) and Har-
 rison (1977), have attempted to structure this problem
 along the following lines (a related, more complicated

 approach may be found in De Groot 1980). You model
 the various events to which you were initially willing to
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 assign some common probability w (or some appropriate
 subset thereof) as exchangeable. It then appears to follow
 that, after observing a proportion p $ w of many such
 past events in fact occurring, the next such event (to
 which you wanted to give probability w) should in fact
 be assigned a probability near p. That is, your w is re-
 calibrated to p.

 While this seems very sensible, its coherence is sus-
 pect. How can you simultaneously assign two different
 probabilities to one event? The obvious answer is that
 they must be conditional on different information: X is
 prior, and p posterior, to the calibration experience. Such
 a response, however, will not do when the initial prob-

 ability assessments are sequential, since the calibration
 experience is then also prior to w. As we have seen in
 Section 2, in this case all the events under consideration
 are judged independent. This is a degenerate case of ex-
 changeability and does not allow for accumulated expe-
 rience to alter probabilities. If you wish to recalibrate
 sequential forecasts, you are being incoherent.

 Even if you do recalibrate, and eventually achieve a
 satisfactory empirical calibration curve, it does not follow
 that the property of the Theorem ('k close to Pk) will
 hold for arbitrary admissible selections. Similar remarks
 apply to the forecaster who attempts to "cheat," by quot-
 ing probabilities that differ from his true assessments in
 an attempt to improve his apparent calibration perform-
 ance (De Groot 1979). While this may be possible to a
 limited extent, it would not guarantee that Sk will be close
 to Pk in the general case.

 6. COHERENCE AND CROMWELL'S RULE

 Any application of the Theorem yields a statement of
 the form Hl(A) = 1, where A expresses some property of
 perfect calibration for the distribution H1. In practice,
 however, it is rare for probability forecasts to be well
 calibrated (so far as can be judged from finite experience)
 and no realistic forecaster would believe too strongly in
 his own calibration performance. We have a paradox: an
 event can be distinguished (easily, and indeed in many
 ways) that is given subjective probability one and yet' is
 not regarded as "morally certain." How can the theory
 of coherence, which is founded on assumptions of ra-
 tionality, allow such an irrational conclusion? In order
 to answer this question, we must consider more deeply
 the foundations of the theory of coherence, and in par-
 ticular, the interpretation of zero probabilities.

 One approach to the theory of coherence is as follows
 (de Finetti 1964; Lehman 1955). Let A be an event, iden-
 tified with its indicator. Your subjective probability of A
 is rr if you would regard as fair a bet that returned you
 c(A - -i). Here c, related to the stake, is at choice, and
 may be positive or negative. (For realism, c should be
 small.)

 If you now attach subjective probabilities (-rr) to various
 events (A), then you should regard as fair a combined bet
 that results from simultaneous fair bets, at arbitrary
 stakes, on a finite collection of these events. The return

 from such a combined bet would have the form ,I=
 ci(Ai - uri), where the (ci) are arbitrary, and wri = wr(Ai).

 The principle of coherence requires that you do not
 regard as fair a bet whose return is certain to be negative,
 whatever the outcomes of the events involved.

 It follows from this principle that (-r) must be chosen
 to avoid the possibility that, for some choice of (Ai, ci),
 ,=, ci(Ai - wri) < 0 always. It may then be established,
 for example, that the (ir) must lie in [0, 1], and obey the
 (finite) addition law of probability. An extension of this
 argument to called-off.bets produces the multiplication
 law.

 The above definition of coherence has been criticized
 as too weak by Shimony (1955) and Kemeny (1955). They
 prefer a principle of strict coherence (see Carnap 1971)
 that refuses to allow as fair a bet whose return is never
 positive, and sometimes negative. This possibility is al-
 lowed by our ear.lier (weak) principle of coherence, al-
 though the event of negative return must then be assigned
 zero probability. Strict coherence implies that no possible
 event can have probability zero, a property Carnap (1971)
 calls regularity. Lindley (1982) dubs this regularity re-
 quirement "Cromwell's rule."

 Clearly, regularity cannot hold in continuous sample
 spaces, and the above principle of strict coherence be-
 comes unworkable. Nevertheless, the weak principle still
 appears too weak; Buehler (1976), reflecting on his ex-
 amples, opines "we have yet to arrive at a suitable theory
 of coherence for statistical models having arbitrary pa-
 rameter spaces."

 One possible position is as follows. In any event-field
 si, there will be a class I of events that, while they may
 be logically possible, nevertheless can be regarded as
 "morally impossible" or "ignorable" (Dawid 1980): for
 example, the (idealized) event of a dart hitting an exactly
 specified point on the board. If we are prepared to coun-
 tenance a bet that never wins, and loses sometimes, so
 long as the event of loss is ignorable, then we need only
 ensure that our subjective probability is positive for non-
 ignorable events. We take this as the generalization of
 Cromwell's rule. I, at any rate, find such a principle
 compelling.

 However, the property discussed at the start of this
 section implies that the typically nonignorable event of
 miscalibration must be assigned probability zero. While
 this does not contradict weak coherence, it is in conflict
 with the above appealing version of Cromwell's rule.
 (Although we have assumed countable, rather than finite,
 additivity in deriving our Theorem, I believe this does
 not alter the general conclusion if suitably interpreted.)
 As I am loth to accept a theory of coherence that does
 not contain some form of Cromwell's rule, my confidence
 in the universal applicability of the theory of coherence
 is shaken.

 7. COHERENCE OR CALIBRATION?

 The dilemma would be harmless if the forecaster were
 not an individual, but a constructed statistical system that
 outputs probabilities on being fed with appropriate data:
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 for example, a system for probabilistic medical diagnosis,
 tuned on a training set of patients, and applied to symp-
 tom information on new patients (Titterington et al. 1981).
 Any such system is applied only tentatively, while it
 seems to be working; as soon as it is clear that there is
 a conflict between its predictions and reality, such as
 clear evidence of miscalibration, the system will be mod-
 ified or discarded. Because the system was never re-

 garded as infallible, this causes no difficulty.
 It seems to me that the subjectivist forecaster is obliged

 to treat his own subjective distribution H in the same
 tentative manner as he would an external statistical fore-

 casting system. If H attaches probability zero to a non-
 ignorable event, such as asymptotic miscalibration, and
 if this event happens, then H must be treated with sus-

 picion, and modified (e.g. by recalibration) or replaced.
 But such a process is intrinsically incoherent.

 In practice, we should deal with an event such as poor
 calibration over a long historical sequence, suitably de-
 fined, and with its assigned near-zero probability. If the
 event is chosen in advance, at any rate, its occurrence
 must cast doubt on the distribution H. This idea is close
 to classical hypothesis testing, and could have corre-
 spondingly many variants. Although I cannot perceive
 any clear logical principles that might govern its detailed
 application, I find its general message unavoidable. Box
 (1980) has put forward a similar view of scientific infer-

 ence as the construction of successive Bayesian models
 of the world, each being subject to empirical test of the
 above kind, and replaced when it no longer seems to
 describe reality. A difficulty with this position is that one
 has no guarantee that the incoherent process suggested
 would perform any better (in calibration, say) than a co-

 herent one.
 The conflict between calibration and coherence could

 be avoided only by 'a distribution fI that was not even
 potentially miscalibrated. Such a distribution would have

 to take account of information in Q3i- l about its calibra-
 tion performance to date when forecasting for day i, as
 well as being fully coherent and representing the ac-

 ceptable betting behavior of the forecaster. Considering
 the wide variety of admissible selections that may be used
 to test the calibration property, it seems doubtful, al-
 though not impossible, that such a coherent, self-cali-
 brating distribution could exist.

 APPENDIX: PROOF OF THEOREM

 The proof is a slight variant of that of Theorem VII.

 9.3. of Feller (1971). Let i = vi-l if vi > 0, Pi = 0
 otherwise, and let Xi = i3i( Yi - Yi). Since Pi, (i and ki
 are Pi- -measurable, and Y1i = E(Yi I 3i- 1), it follows
 that E(Xi I Pi- l) = 0, so that, with Uk = Xi, (Uk)
 is a martingale adapted to (@k). Also,

 E(Xi2) = E[( i3i)2 var ( Yi I 9i- l)] < 1E[( iti)2],

 E( Uk2) = EE(X12) ' 4E[p (I3 ,21.

 Now for any realization of ( I, t2 3, . . .), the successive
 nonzero terms of the sequence (I tj )29 (PA2 2)2, . . . are
 1, 1/22, 1/32, 1/42, .... Thus

 k 00

 E (I3*i) C E ,-2 = ,2/6
 i=l n=l

 and so E(Uk2) is bounded above by 72/24. By the mar-
 tingale convergence theorem, the sequence (Uk) =

 (= 1 * I (i Yi - Yi)) converges with Hl-probability one.
 From Kronecker's lemma (Lemma VII. 8.1 of Feller

 1971, correcting a misprint), this convergence implies that

 k

 Pk - Ik = P)k E (ifYi Y i) ?-

 so long as (Pk) tends monotonically to 0, which will hold
 when Vk 00

 The Theorem and proof continue to hold for arbitrary

 random quantities (Yi), not necessarily 0 - 1, with 1iY
 = E(Y1 I j- 1 ), so long as var(Yi I Ij- l) is uniformly
 bounded above; no doubt this condition could be relaxed.
 The identical argument in fact yields the more refined
 result that

 k

 g(V k) yi i Y i - ) O
 i = 1

 (fI - almost surely when Vk > oo) so long as g(n) is

 eventually nondecreasing with n= g(n)-2 < ??. In par-
 ticular, Pk - 'lk = O(Vk-?t) for any a < 2

 [Received November 1979. Revised January 1981.]
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 Comment
 JOSEPH B. KADANE*

 Dawid gives a very interesting theorem to the effect
 that a coherent Bayesian feels almost certain he is well
 calibrated under conditions of feedback. It is an extension
 of Pratt's (1962) unpublished theorem on calibration. I
 have no criticism of the theorem; my comments concern
 Dawid's interpretation of it.

 Coherence is a very mild set of constraints on a per-
 son's beliefs. It says roughly that those beliefs must be
 internally consistent, in the way described in Section 6
 of Dawid's article. It does not imply that others do or
 should agree with a person who has coherent beliefs, nor
 that those subjective beliefs model well the predicted
 events. The person who is sure it will rain in the future
 on all odd numbered days and sure it will not rain on all
 even numbered days in a particular place is coherent.
 Yet, given my beliefs about the weather, I do not expect
 many days to pass before such a person is confronted
 with an event or subjective probability zero.

 With this as background, let us reconsider the meaning
 of the sentences, "We denote by i the totality of events
 known to the forecaster on day i; thus 13 C I C ...

 The forecaster has an arbitrary subjective probability

 distribution ir defined over 2. = U;=0 2i." In order to
 elicit t, I must first anticipate for each day i in the future
 all the possible events that might occur and might influ-
 ence my probability for precipitation on day i. This will
 surely include the results for days 1, . . ., i - 1 (and my
 probabilities of precipitation on days 1, . . ., i - 1) and
 may include data from other places, and new meterol-
 ogical theories that may have been made known to me
 on day i, and so on. Merely enumerating the elements of

 Ji is a job beyond human capability.

 * Joseph B. Kadane is Professor, Departments of Statistics and of
 Social Science, Carnegie-Mellon University, Pittsburgh, PA 15213.

 The assumption QIO C 2I C . . . says essentially that
 my memory is perfect, that I never forget an event that
 might be relevant. While mathematically easy to state,
 this is not trivial to accomplish.

 Having enumerated the elements of Tj and remem-

 bered all past elements j -I so that j3 - 1 C j, I must
 now state, for each possibility in the set Pj, what my
 precipitation probability would be were that the event to

 be observed. Furthermore, I must do this in a way that
 respects everything I said about ij- 1. This is again an
 extremely difficult task, and one I am sure to want to
 approximate in practice. Fully to elicit -a is to anticipate
 the possibility of all future new data and new discoveries,
 to anticipate when they will be published, and then to
 state how influential such data and discoveries would be
 to me. Such an elicitation is beyond human possibility as
 a practical matter.

 Nonetheless, let us join Dawid in supposing such a
 distribution. In this case Dawid shows that I believe that
 ultimately the (-weighted proportion of events occurring
 will approach my i-weighted probability, provided only
 that the sum of the weights go to infinity. I do not find
 this unreasonable. It says that in the infinitely far future
 I believe I will learn everything (down to an irreducible
 stochastic nub) about whether it will rain tomorrow.

 What finite sequence of events should persuade me
 that miscalibration is in fact occurring? Professor Dawid
 is vague on this point. In principle, no finite initial se-
 quence constrains a limit in any way. Furthermore the
 hypothetical elicitation of X has already required me to

 state how I would respond to each element of j. So why
 should I change anything now? Only if I have done a
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