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 Two steps are required for firms collusively to restrict output in stochastic markets. Firms

 must homogenize their market estimates by pooling injormation and they must cooperatively
 allocate production levels. In this article I examine the incentives,forfirms to share private
 information about a stochastic market. I show that there is never a mutual incentive,for all
 firms in an industry to share unless they may cooperate on strategy once inJormation has
 been shared. This situation is un,fortunate, as society's welfare is maximized only when

 firms share inJbrmation, but act competitively.

 1. Introduction

 N Oligopolistic collusion in a stochastic market environment requires two steps. Firms
 must first agree on their estimates of the market state. Then they must cooperatively

 determine, and follow, an optimal strategy based on these homogenized beliefs. Most
 studies of cooperative oligopoly focus on the second step (Fellner, 1949; Telser, 1972;
 Friedman, 1977). A general conclusion is that given common information, collusion
 increases industry profits. In this article I concentrate on the first step-the incentives for

 firms to share private information about a stochastic market. I show that in a full Bayes-

 Cournot equilibrium, there is never a mutual incentive for all firms in an industry to
 share information. This situation is unfortunate as society's welfare is maximized only
 when firms share information, but act competitively. Thus, society faces a dilemma.

 Information pooling is good if firms behave competitively, but shared information makes

 anticompetitive agreements easier to construct.
 The definition I use of a "full Bayes-Cournot" equilibrium assumes that firms make

 their quantity decisions based on their best Bayes estimates of their opponents' infor-
 mation. This equilibrium is formally identical to the "fulfilled expectations Bayes-Cour-
 not" equilibrium specified in Novshek and Sonnenschein (1982). This study differs from
 Novshek and Sonnenschein's analysis in that I assume uncertain market variables may
 be parameterized by normal distributions. This allows the precise conditional expectations
 that characterize the equilibrium to be computed. Novshek and Sonnenschein make
 weaker distributional assumptions about the market's random variables. But to compute

 an equilibrium, they are forced to approximate firms' conditional expectations about
 other firms' data by assuming that each firm believes others' data are identical to their
 own. This simplifying assumption has several severe implications. It is only consistent
 with the rest of their model if firms' data noise variance is zero.' This forces the firms'
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 optimal decision rules to be certainty-equivalent. Thus Novshek and Sonnenschein's prin-

 cipal result that firms are indifferent to complete information sharing, is valid only when
 firms are approximately certain of their environment. When conditional expectations are
 computed exactly, assuming normally distributed random variables, decision rules are

 not certainty-equivalent, and equilibria can be computed for a full range of data noise
 variances. Within this general framework it can be shown that all firms never wish to

 pool their information-except in the two special cases of zero or infinite data noise
 variance, when they are indifferent to pooling. In the sequel I call exactly computed

 equilibria, "full Bayes-Cournot" equilibria, and call equilibria computed by using Novshek
 and Sonnenschein's restriction on conditional expectations, "fulfilled expectations Bayes-
 Cournot" equilibria.

 In Section 2, I discuss how market uncertainty affects incentives to collude. The

 influences of private and shared imperfect information on oligopolistic strategies along
 with an information structure are described in Section 3. A general Bayesian Cournot

 game model is presented and solved under imperfect information in Section 4. Section
 5 attaches a simple oligopoly specification to the model of Section 4. The influences of
 varying accuracy of information on firm profits are displayed. In Section 6, I analyze the

 private incentives for firms to convert private into public information through pooling.
 The welfare effects of the various market outcomes are discussed in Section 7. Concluding
 remarks are in Section 8.

 2. Uncertainty and collusion

 * Oligopolists' incentive to cooperate is very strong. By agreeing to restrict output, industry
 profits may be higher than if each firm acts independently. But stochastic market envi-
 ronments make successful collusion difficult. There are two reasons. First, as long as in-

 formation (even if shared) is imperfect, firms are never sure of exact market conditions.
 When it is not possible to know the precise market state, Stigler (1964) points out that it

 is difficult to detect cheating on a collusive agreement, since perceived chiselling could be

 the result of outlying data observations rather than actual malicious behavior. In Green
 and Porter's (1981) dynamic oligopoly with trigger-price strategies, imperfect information

 similarly influences how frequently outputs will be collusively restricted or competitively

 expanded. A general conclusion of both models is that collusive output restriction is more
 moderate when imperfect information impedes the detection of cheaters. (See also Posner

 (1976) and Spence (1978).)

 The second reason why imperfect market information may inhibit collusion is that
 if information is private (nonshared), firms may hold divergent views about market con-
 ditions. Lacking a confluence of opinion, firms find it difficult to agree on a cooperative
 strategy. An industry cartel would find it hard to determine optimal output shares if some
 members believe demand to be contracting by 5% while others believe it to be rising by
 20%. For these two reasons, we should not expect collusive quantity setting in oligopolies
 where firms' information is imperfect and nonshared.

 Information pooling facilitates collusion. It eliminates disagreements based on private
 information by allowing oligopolists to homogenize their perceptions of both the market
 state and other firms' information. Pooling also makes cheating more difficult and collusive
 quantity restriction more effective by improving the accuracy of every firm's market estimates.
 Information pooling may have a degrading effect on a firm's profits, though. When infor-
 mation is pooled, the quantity decisions of firms become more highly correlated. This may
 reduce the profits available to each firm. Trade associations are one example of information-
 sharing agreements. These groups collect private data from firms and disseminate it
 throughout the industry (Hay and Kelley, 1974; Fraas and Greer, 1977). Though information
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 sharing should only arise if it raises firms' profits, it is also possible that sharing sufficiently
 mitigates risk so societal welfare is improved as well.2

 In the sequel I show that if all firms voluntarily enter an information-pooling agree-
 ment, it means they expect to set outputs in an anticompetitive fashion-with lower
 social welfare than if the firms set competitive quantities solely on the basis of their private
 information.

 3. Information structure

 * The stochastic oligopoly considered here is a Bayesian game as formalized by Harsanyi
 (1967, 1968a, 1968b). Firms know their own profit functions and the profit functions of
 their rivals, but are imperfectly informed about variables such as cost or demand that
 specify the market environment or state. This uncertainty may impinge on the firm in
 two ways. First, since the exact environment is unknown, firms must collect information
 and form estimates of the market state. Second, since the noisy information available to
 one firm may not be shared by other firms, firms must estimate the state estimates held
 by other firms. While the first influence of uncertainty arises in any market, the latter
 only occurs in oligopolistic markets where all information is not public. If all information
 is pooled, firms know precisely the state estimates held by other firms. And if markets
 are not oligopolistic with recognized mutual interdependence, the influence of nonshared
 information is irrelevant.3

 Before introducing the particular information structure studied, I describe the other
 game elements. State variables are the elements such as demand and costs characterizing
 the market environment. Control variables are instruments firms use to maximize
 profits-where profits are a function of both the state and control variables. Strategies are
 decision rules firms use to select values for their control variables. Firms' decisions must
 be conditioned on their available information. The following notation is used:

 x = vector representing the market state; x E X set of all possible state values; there may
 be a probability distribution given over X.

 yi = information vector available to firm i; yi E Yi set of all possible information values
 for firm i, i = 1, . .. , N.

 u, = 'yi(yi): control value chosen by firm i, ui E Ui set of all possible control values for
 firm i; oy * ) is firm i's strategy or decision rule, -yi E (F the set of all Borel measurable
 functions mapping the information space Yi into the decision space Ui.

 The information structure of the game is a description of the range of each firm's
 knowledge about the state, and about other firms' information. Individual firm infor-
 mation sets include noisy data measurements of the state and a priori beliefs. The noisy
 state measurements are represented by the random vector:

 z, = measurement of state x received by firm i, zi E Zi set of all possible measurements.

 These data are related to the true state value x via the observation equation:

 Zi = x + vi, (1)

 2 Posner (1976) also makes this point, i.e., information exchange aids collusion, but in the absence of
 collusion, such exchange is socially desirable.

 I This characterization of noisy information as shared or private corresponds to Harsanyi's (1967, 1 968a,
 1968b) classification of imperfect versus incomplete information, i.e., firms are uncertain of exogenously given
 market states (imperfect information), but may also be ignorant of rival firms' information (incomplete infor-
 mation).
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 where vi is Gaussian white noise with mean zero and covariance matrix Ri,
 vi - N(O, R,). Measurement zi conveys perfect information if the distribution of vi is
 degenerate, tr {Ri} = 0. Measurements are imperfect or noisy if vi has a nondegenerate
 distribution, tr {Ri} > 0. For convenience, I assume that the measurements received by
 each firm are independent of one another. But even if they were correlated, no qualitative
 results in this article would be altered.

 A portmanteau variable 0 E 0 contains the a priori information. Lack of a subscript
 indicates that all firms share the same a priori information. If this were not true, there
 would be severe difficulties, dealt with in Aumann (1976), Harsanyi (1967, 1 968a, 1 968b),
 and Geanakoplos and Polemarchakis (1982), concerning the specification of common
 knowledge. This common a priori information is assumed to contain the accuracy of

 each firm's data measurements, RI, . . ., RN, and the prior probability distribution over
 x. This prior on x is also Gaussian, x - N(tt, M). Thus 0 represents the collection,
 0 = {,U M, RI, ..., RN}. Firm i's complete information vector may now be denoted:

 yi= {zi,0}, i= 1,...,N. (2)

 Firms may pool their private information zi by constructing and sharing the sufficient
 N

 statistic z = R z R-'zi. This statistic has a Gaussian distribution, z - N(x, R), where

 N

 R = [ R-']-'. Hence, under shared information all firms have the identical information

 vectors:

 y= {z,}, 0= {,M,R}. (3)

 In the following section, I define the game equilibrium and demonstrate the firms'

 optimal strategies under these two information structures.

 4. Equilibrium

 * The game model is N-player, nonzero-sum. Noncooperative behavior is assumed to
 result in a Cournot equilibrium. In such an equilibrium no firm may improve its payoff
 by any unilateral action. Cooperative behavior is assumed to result in the monopoly
 solution.4

 A linear-quadratic payoff structure is necessary to show the existence of a unique,
 noncooperative Cournot equilibrium. While this restriction is severe, the linear-quadratic
 may be considered a second-order approximation to more general functional forms. This
 structure also accords with related models in the literature by Radner (1962) and Basar
 and Ho (1974).

 The profit function for firm i may be written:

 Iri(X, Ul,***, UN) = u'Cix + ?2utDi,ui + z uWDijui, (4)
 j#1

 where Ci, Dii, and Dij are conformable parameter matrices with Dii negative definite.
 Expected or average profits for firm i are given by:

 Ji(-Yl, . ..,YN) = E[iri(x, Ul, . . . , UN)IU1 = -yj(.), j = 1, . . . , N], (5)

 where expectation is taken over the prior distributions of the random variables x, and

 Vl, ..., VN.

 4 This is, of course, a naive view of cooperative oligopoly. I use it only as a convenient point of comparison

 with noncooperative oligopoly. For a more sophisticated look at cooperative oligopoly, see Telser (1972) or

 Friedman (1977).
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 Definition: A set of strategies {-y*, . y.., define a full Bayes-Cournot equilibrium if:

 Ji(zl,* *, -yr) 2 Ji('l, . . *, -1, zi, y+1, .. .,-y) for all yi E ri, i = 1, .. ., N.

 Theorem 3 of Basar (1978) demonstrates that under certain conditions on the Dii
 and Di1 matrices-which are satisfied in any well-posed oligopoly specification-a unique
 set of equilibrium strategies {'', .. . ., -y*} exists. Theorem 4 of Basar (1978) shows these
 decision rules are linear with the form:

 71*(yi) = AiA + Bj(di - A), i = 1, ... , N, (6)
 where

 di = E[xlyi] = A + Gi(zi- A), i = 1, ... ., N) (7)

 is firm i's Bayes posterior estimate for the state x; and Ai and Bi, i = 1, . . ., N, are the
 unique solutions to:

 Di,Ai + DijA1 = -Ci, i = 1, .. ., N, (8a)
 j#i

 DiiBi + D DjBjGj = -Ci, i = 1, ... , N. (8b)
 j#i

 The matrix Gi is called the filter gain matrix. It is computed from the covariances of the
 prior and data. Since prior and data are both assumed normal, a straightforward application
 of Bayes' rule shows that

 Gi = (M-' + R,'f)-'R.5 (9)

 If firms pool information, a special case of the above reasoning shows that each firm's

 strategy is:

 Iy?'(y)=Aid, i= 1,...,N, (10)

 where Ai is derived from (8a), and the common posterior Bayes state estimate d is com-
 puted:

 d =E[xly] = + G(z-u), (11)

 G = (M-' + R-')-'R-, (12)

 and z and R are given as in Section 3.
 In the Appendix, I demonstrate on a heuristic level the above derivations. For a

 rigorous proof, the reader is referred to Basar (1978).
 Before presenting the actual oligopoly specification, I shall make a few observations

 about these results. First, note that the solution to the shared information game is certainty-
 equivalent, i.e., if d were known to estimate the state exactly, d = x, then the firm's optimal
 decision would still be uO = Aid = Aix. When there is both private and shared information,
 the firm's decision rule is not certainty-equivalent. This is evident from (8b), as the Bi
 coefficients are functions of the filter gain matrices Gj. Thus, data noise influences the

 optimal decision rule. If a fulfilled expectations equilibrium was computed in the manner
 of Novshek and Sonnenschein (1982), then Bi = Ai, independent of the Gj (see the Appendix
 for details). In such an equilibrium, the firm's decision rule would reduce to -yFE(yl) = Aid,.
 The difference between this certainty-equivalent action and the optimal action under full

 Bayes equilibrium is -yFE(yi) - -yi (yi) = (Al - Bi)(di - ,u), where Bi is computed as in (8b).
 This term, which Novshek and Sonnenschein neglect, is always nonzero unless the firm's

 data are identical to its prior (zi = = di), which only arises if data noise variances ri all
 equal zero.

 I See DeGroot (1970) for a fuller discussion.
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 5. Oligopoly specification

 * Within the linear-quadratic framework, I specify a particularly simple, but popular,

 oligopoly. For clarity, I initially assume two firms. Later in this section, I display the

 oligopoly equilibrium for N firms.

 Firms sell a homogeneous good with constant unit costs of production. They face

 a linear demand curve with a random intercept. Thus, market price net of unit costs is

 N

 p= a- b J u, (13)
 j=1

 where a is the random demand intercept minus unit costs, b is a known slope parameter,

 and uj is the output of firm j. Firms choose outputs ui (controls) to maximize profits:

 WI = Pu,. (14)

 This oligopoly corresponds to the general model in Section 4 if we associate the random

 intercept a with the state variable x; Uj, j = 1, . . . , N, with the control variables; and
 Ci = 1; Dii = -2b; Di1 = -b, i # j.

 Since the state vector is a scalar, each firm's posterior state estimate is di =
 + gi(zi - /i), where gi = m/(m + ri). Lower-case letters correspond to the scalar value of
 the matrix denoted by the upper-case letter. The decision rule coefficients for the
 N = 2 case are:

 Ai = i=1, 2, (15)
 3b'

 2 -g2 2 -g1 16
 b(4 - gg2)' B2=b(4 - gig2)(

 Pooled information results in the posterior state estimate d = , + g(z - ,i), where

 g = m/(m + r) and r = (rlr2)/(r, + r2). If we rewrite g in terms of g, and g2, we have:

 g, + g2- 2gg2 (17)

 Under pooled information and competitive behavior, the control law coefficients remain
 as in (15). If firms use pooled information to produce as cooperative joint profit maxi-
 mizers, it is simple to show that optimal industry output is u* = d/(2b).

 The quality of a firm's information is related to its filter gain gi. For any fixed level
 of prior covariance m, gi increases from 0 to 1 as ri declines from oo to 0. If firm i's data
 are very inexact (ri oo), then its filter gain approaches zero (gi - 0). As firm i's data
 accuracy improves (ri - 0), its filter gain approaches one (gi - 1). In the sequel, I assume
 that m is fixed. Hence, there is a monotonic relation between the magnitude of g, and the
 accuracy of firm i's data. I also set ,u = 0. This simplifies notation without any loss of
 generality.

 Expected Cournot profits for firm i under private information may be computed by

 substituting optimal controls, u* = Bldl, u2* = B2d2, into (14):

 Ji(y4, -y,*) = E[(a - b(Blglzl + B2g2z2))Bigizi]. (18)

 Denoting this expression by irP, and remembering that E[azJ] = m, E[z?] = m + ri, and
 E[zizj] = m for i # j, with some straightforward calculation we reduce this to:

 -rP = bB g2m, i = 1, 2. (19)

 Under information sharing expected profits for each firm are:

 = gm I i Inn\
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 If firms act cooperatively, it is not possible to determine precisely the profits earned by

 each firm, since the division of industry profits among firms may be colored by differences
 in relative bargaining power. However, expected industry profits under cooperative quan-

 tity setting would be:

 c gm (21)
 4b

 For an N-firm oligopoly, the optimal strategy coefficients are Ai = 1/(N + 1)b for
 i = 1, . . ., N. The Bi coefficients are computed from (8b). Firm i's profits in a private
 information equilibrium are then given by (19). If all N firms pool their information, each
 firm's common filter gain would be:

 N

 2:[gi O - gj)]
 g N i=I N (22)
 2:[gi n( O- gJA+ n(O- gi)
 i=l j#i i=I

 Under competitive play, this shared information yields each firm a profit of:

 gm1=
 = (N+ i = 1, . . ., N. (23)

 If shared information results in cooperative play, industry profits are the same as (21).

 Before comparing profit levels under the different information structures, it is useful
 to verify the effects of information accuracy on firm profits. Differentiating 7r, and lr' with
 respect to g shows that raising the accuracy of group information increases profits in either

 the shared noncooperative or shared cooperative oligopolies. Since ag/agi > 0 for all i,
 raising the accuracy of one firm's data also has the same effect if data are shared.

 If, however, firms are restricted to their private information, an increase in the ac-
 curacy of one firm's data raises its expected profit, but lowers its opponents' expected

 profit. For the two-firm case this is easily demonstrated:

 I=2bB , gm+bB,m>O
 ag1 ag1l

 because

 -B, g2(2-g2) > 0 and B, >O for O < gl,g2C 1;b>O;
 ag91 b(4 - gg)

 and
 _9_7_ aB2

 =2bB2 g2m<0
 agl agl

 because

 aB2 -2(24-g2) <O and B2>0 for 0 < g1,g2< 1; b>0.
 (9g1 b(4 - glg2)

 An inductive argument establishes these properties for N-firm oligopolies.
 Whether improvements in one firm's information raise overall industry profits is

 ambiguous. Examine the two-firm case. Differentiating expected industry profits with
 respect to g1 gives:

 a(irP + 7rs) bmB

 ag91 -(2 - g2)(4 - g1g2)2[8+6g2-gg-lg.

 The sign of this expression is the same as the sign of the expression in brackets. It is

 generally positive except for large values of g2 coupled with small values of g1. In this
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 case it is negative. Thus, in a two-firm oligopoly improved accuracy for one firm generally
 raises industry profits, unless that firm is quite ignorant, while its rival is quite knowl-
 edgeable.

 6. Incentives for firms to share

 * Are there private incentives for firms in an industry to trade their private information
 for pooled information of higher accuracy? Given the positive influence of own infor-
 mation accuracy on own profits and its negative influence on other's profits, it would
 appear that firms with less accurate information than their rivals' would wish to share,
 but firms with sufficiently more accurate information would not wish to pool. Are there
 combinations of information accuracies, say when firms have about equal data precision,
 that yield each firm a higher profit under sharing than under using privately obtained
 information? The answer is no. If firms have equally accurate information, they cannot
 improve their profits by sharing. A firm may only improve profits by sharing if its in-
 formation is substantially less accurate than its competitors'-but in this event, its com-
 petitors will not wish to give up their information advantage through sharing. This is
 easiest to demonstrate for the two-firm case. We seek values of gl, g2, and g such that

 rP, ir 7r for 0 < gl, g2< 1:

 -P = bmB21g1 i gm =x,
 9b

 m 4gl - 4glg2 + g9g2 ir mg, +g2- 2gig2 (24)
 b 16 - 8g1g2 + g2g2 b 9 - 9g1g2

 or

 2g 3g- 13g2g3 + 2g2g - 2 - 28g g2 + 17g1g2 - 4g1g2 + 20g, - 16g2 0

 There are no roots to this expression for 0 < g2 < g, < 1. It is always positive in this
 region. Only when gl = g2 = 0 or g1 = g2 = 1 are firms just indifferent between sharing
 and keeping information private (Clarke, 1983). This latter case of zero noise variance
 displays the indifference result of Novshek and Sonnenschein (1982). Otherwise there are
 no (gl, g2) combinations where there is a joint incentive to share information. Equations
 comparing irP with 7r' in N-firm oligopolies are more elaborate than the two-firm equation
 (24). But straightforward algebraic induction reveals that the qualitative results remain
 the same: all firms cannot gain by sharing information.

 This indicates that under the requirement of noncooperative behavior, we should
 not see all firms in an industry freely sharing information. It may still be that firms are
 willing to sell information. This possibility would exist if total industry profits (producer

 surplus) under shared information exceed the producer surplus under private information.
 Except in one case, however, there are insufficient profit increments accruing to the less
 knowledgeable firms under information sharing to enable them to compensate adequately
 the more knowledgeable firms for their profit losses due to sharing. This special
 case occurs in a two-firm oligopoly. Compute the (gl, g2) combinations such that
 rP + 7r i 7rs + 7r for 0 gl, g2 1

 irP + 7r$ i irs + r2

 m 4gl + 4g2 - 8g1g2 + g2g2 + g1g2 m m 2g, + 2g2 - 4g1g2
 b 16 - 8g1g2 + g1g2 b 9 - 9g1g2

 For nearly all values of (gl, g2), private information profit-dominates shared information.

 Only if one firm has extremely accurate information, gi > .96, while the other firm's
 information is also not unduly inaccurate, gj > .57, are industry profits improved by
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 information sharing. Hence, the firm with bad information may be able to bribe the firm

 with good information to share its knowledge. For oligopolies of three or more firms, there

 are no filter gain combinations where producer surplus rises from universal information
 pooling.

 So far I have assumed that information sharing does not lead to cooperative play. If

 cooperative quantity setting is possible, then there is always an incentive to share-as long

 as a suitable profit distribution can be negotiated among the conspirators. To see this,
 N

 compare industry profits under private information, z irl, with industry profits under

 N

 shared information with cooperative play from (21). Calculations verify that E ir" < 7r'

 for all (gi, . .. , gN) with equality only when all but one gi equals zero. This results because,
 N

 for example, if gj > 0, gi = 0 for all i # j, then g = gj and = j= r'. But if

 information sharing with cooperative play is associated with an equal distribution of profits,

 i.e., r" = . .. = 1rN = lr'/N, then firms with sufficiently better than average information
 may not wish to join the cartel. Hence, cartels would only form in industries where firms

 have approximately equal knowledge.

 In sum, we have seen that if firms must act noncooperatively, they will never all

 agree to share information gratuitously. If firms may make payments to other firms in

 return for revealing private information, there are a few duopoly (gl, g2) combinations

 where industry profits increase so that a compensation scheme is feasible. If cooperative

 behavior is permitted, then industry profits will unambiguously improve if all firms share
 their information and act jointly. While there is some leeway in determining the share
 of profits to be parcelled out to each firm under such an arrangement, it is limited by the
 security level that each firm may attain by keeping its information private. Thus profit

 shares under cooperation must follow information shares fairly closely.

 7. Welfare

 * In the previous section, I have discussed the effects of information accuracy and
 sharing on producer surplus under noncooperative and cooperative behavior. In this
 section, I examine the effects of these factors on consumer surplus and overall welfare.
 Under private information, the expected value of producer surplus may be computed
 from (19) as

 N

 PSp= Z ir'. (26)

 Expected consumer surplus is

 N

 CSP = '/2(m B,g, - PSP), (27)

 and expected total surplus (welfare) is

 WP = PSP + CSP. (28)

 If all firms share information and choose competitive quantities, expected producer sur-
 plus is computed from (23),

 N= 0 - Ngm
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 expected consumer surplus is

 _ N 2mg
 CSS2(N? 1)2b= (30)

 and expected welfare is

 Ws= PSs + CSs. (31)

 When all firms share information and cooperatively select quantities, expected producer

 surplus comes from (21),

 PSC - gm (32)
 4b'

 expected consumer surplus is

 CS' gm ' (33)
 8b'

 and expected welfare is

 WC = PSC + CSC. (34)

 It is straightforward to verify that each total surplus rises when any player's information

 improves. Hence information is always a "good" for society-assuming a fixed regime of

 noncooperation or cooperation. The important issue, though, is how consumer surplus

 and welfare changes if private information becomes shared, or play switches from competitive

 to cooperative. The following set of inequalities describes the relative surplus levels under
 the different regimes:

 PS > PSP ` PSs 6

 CSS 2 CSP 2 CS',

 Ws 2 WP 2 W'.

 Thus society and consumers' first preference is to have information shared among firms
 choosing competitive quantities. But if cooperative behavior cannot be prevented once
 information is shared, a second-best equilibrium might be to ban universal information
 transfers.

 8. Concluding remarks

 * This article has demonstrated that in a general "full Bayes-Cournot"9 equilibrium,
 universal information sharing will not take place in a competitive world (except perhaps
 when firms are perfectly informed or completely ignorant and they are indifferent to

 sharing). This result simplifies policy issues. If all industry firms are observed to pool
 information without paying each other compensation, they must be setting quantities

 cooperatively on the basis of the homogenized information.7 Hence information-pooling
 mechanisms like trade associations can be considered prima facie evidence that firms are
 illegally cooperating to restrict output. This result strengthens Posner's (1976) informal

 analysis of the desirability of information-sharing agreements. On the other hand, lack
 of information-pooling mechanisms can be taken as fairly good evidence that cooperative
 behavior is impeded.

 Given that firms have no individual incentive to share information in the absence
 of collusive quantity setting, antitrust authorities are left with a difficult choice. They can

 6 The lack of a strict ordering between PSP and PS' occurs only in duopolies, and was discussed in Section
 5. For N > 2 firms, PSP 2 PSS.

 Even if compensation is paid, there is only an extremely limited range of information combinations

 (gl, g2) where noncooperative behavior under shared information allows higher industry profits than private
 information.
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 attempt to promote or subsidize information transfer while making redoubled efforts to
 suppress cooperative play. Or, if they think that shared information presents just too
 inviting an environment for cooperative behavior, and they doubt their ability to control

 cooperation in an environment of homogeneous information, they may seek a safer,
 second-best equilibrium by simply prohibiting information transfer.

 In the foregoing I have assumed that the cooperative outcome is equivalent to the

 monopoly outcome. If such tight collusion is not achievable, firms are even less likely to
 pool information voluntarily.

 This investigation has demonstrated that under a very general equilibrium concept,
 strong profitability and welfare conclusions can be drawn about information sharing.
 While the stochastic game model used in this article is quite simple, it is also quite general,
 and is a valuable tool for modeling many facets of oligopoly behavior under imperfect
 information.

 Appendix

 * This appendix presents a heuristic, two-firm sketch of how the game model may be
 solved for its Nash equilibrium. The complete proof is in Basar (1978).

 First-order conditions on (5) are:

 ui= -D,-7CiE[xIyI - D,7'DijE[ujIy], i = 1, 2. (A1)
 Since ui = yi(yi), i = 1, 2, we have:

 ,yi(yi) = -Di'C.E[xIyI - Dj,'DijE[,yj(yj)jyJ, i = 1, 2. (A2)
 Now substituting in for 'Y2(Y2), we get

 ,yl(yl) = -D,1'C1E[xJy1] - D-11D 2E[-D2- jC2E[xIy2] - D2'D2,E[,(yY)LY2]IYd], (A3)

 which is a functional equation in y,(y,). This may be rewritten as

 ,y,(y1) = h,(y,) + H,&y1(y1)), (A4)

 where

 h,(y,) = -D,1'C1E[xJy1] + D,11D1 2D22'C2E[E[xIy2]Y1y] (A5)

 HI(*) = D, lDl2D2-D2,E[E[ * IY2]1Y,]. (A6)

 Since it may be shown that the operator E[yj(yj)lyi] is a contraction mapping, a sufficient
 condition to ensure a unique fixed function in the Banach space generated by the linear
 operators E[xlyi] and E[Lyj(y1)lyi] is that

 XID-,'D,2D-'D21 < 1, (A7)

 where XIDI represents the maximum eigenvalue of D'D.
 The control law (6) follows by construction. To simplify matters, assume , = 0.

 Now:

 E[xlyi] = di= Gizi, (A8)

 E[E[xlyI]lyi] = E[G1z1ly1] = GjE[zjlyi] = GjGizi. (A9)

 Since yi(yi) = Bidi = BiGizi, we have

 E[E[yi(yi)jyJ]Jy]= BiGiGjGizi. (A 10)

 Substituting (A8), (A9), and (A10) into (A3) gives:

 B, = -D-,'C, + Dl 'D,2D-lC2G2 + D-1 yDi2D- 'D2B,GIG2, (Al 1)

 which is the equation for B, given in (8b). Substituting (All) into (A2)will give B2
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 The case of shared information is just a special case of the foregoing. If y, = Y2, then
 (A9) and (Al0) become:

 E[E[xlyj]jyi] = Gz (A 12)

 E[E[,yi(yjy]Jyi] = BiGz. (A 13)

 Substituting into (A3) gives

 B, = -D, 'C, + D,l'Dl2D-C2 + D, ,Dl2D22D2lB, (A14)

 which is identical to AI given in (8a).
 The Novshek and Sonnenschein (1982) method of computing their fulfilled

 expectations equilibrium would alter (A9) and (AIO) by forcing E[E[xyj]y]yi]
 = Gizi and E[E[y,)1yi)|yJ1yi] = BiGizi. This results in Bi = Ai, thus the certainty-equivalent
 decision rule.
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