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 In many examples of competitive bidding (e.g., government construction con-
 tracting) the relevant object is either partially divisible or ill-defined, in contrast
 to much of the recent theoretical work on auctions. In this paper we consider a
 more general class of auctions, in which bidders name a "menu" of offers for
 various possible actions (allocations) available to the auctioneer. We focus upon
 "first-price" menu auctions under the assumption of complete information, and
 show that, for an attractive refinement of the set of Nash Equilibria, an efficient
 action always results. Our model also has application to situations of economic
 influence, in which interested parties independently attempt to influence a
 decision-maker's action.

 I. INTRODUCTION

 Economists have recently focused a great deal of attention
 upon the study of auctions and competitive bidding (see, for ex-
 ample, Milgrom and Weber [1982] and the references contained
 therein). Nearly all of this literature has concerned the allocation
 of a single, well-defined, indivisible object.1 In many circum-
 stances, however, the relevant object may be either ill-defined or
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 1. One exception is the literature on share auctions such as Wilson [1979].
 We discuss share auctions as an application of our more general model below in
 Section V.
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 divisible. Large government construction projects are, for ex-
 ample, often composed of several distinct component contracts
 that the government awards simultaneously. During the process
 of competitive bidding, bidders may submit offers on more than
 one component and may condition offers upon the set of contracts
 received (this would be desirable, for example, if they perceive
 economies or diseconomies of scale or scope). Furthermore, the
 government typically allows some flexibility in construction spec-
 ifications. Thus, a contractor may submit several offers with price
 dependent upon specification.

 In this paper we consider a more general class of auctions,
 in which bidders name a "menu" of offers for the various possible
 actions available to the auctioneer (e.g., allocations of the com-
 ponents of a construction project). This set of possible actions
 (allocations) is represented by an abstract choice set over which
 the bidders and the auctioneer have preferences. Our investiga-
 tion focuses upon "first-price" menu auctions. By first-price, we
 mean that bidders pay their announced offers for the allocation
 ultimately chosen by the auctioneer and that this choice is made
 to maximize the auctioneer's payoff, given the menus of offers
 bidders name. Such auctions seem to appear in a variety of con-
 texts.

 Throughout, we assume that bidders have complete infor-
 mation (the auctioneer, presumably, is poorly informed). While
 this assumption is restrictive, it is often a good approximation.
 In the case of construction contracting, for example, bidders are
 typically quite well-informed about each others' costs, even though
 the government is not. Furthermore, although a fully satisfactory
 theory of menu auctions would certainly allow for incomplete
 information, we shall soon see that significant complexities arise
 even when there is no private information.

 In first-price complete information auctions of a single in-
 divisible object, the question of allocational efficiency entails no
 subtlety whatsoever: equilibrium requires that the auctioneer sell
 the good to the individual who values it most highly.2 In general,
 however, the Nash Equilibria of first-price menu auctions need
 not be efficient (we consider an example in Section II). Our central

 2. Suppose that this were not the case. Since the equilibrium sales price pe,
 cannot exceed the winning bidder's valuation, any individual who valued the
 object more highly than the winning bidder would do better by naming the price
 (pe + ?) for some ? > 0-an immediate contradiction.
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 results establish that, for a certain attractive refinement of the
 Nash Equilibrium set (in which bids correctly reflect relative
 preferences for the various alternatives), first-price menu auc-
 tions always implement efficient actions; furthermore, these
 "truthful" equilibria possess a strong stability property and are
 essentially the only equilibria that possess this property. In
 addition, we characterize the net payoffs that arise in these
 equilibria.

 The model that we develop here can also be applied to a much
 broader class of problems in which a single individual is endowed
 with the power to make an important decision, and several af-
 fected parties (whose interests conflict) offer rewards or bribes in
 an attempt to obtain personally desired outcomes. We refer to
 these situations as instances of "economic influence."

 Many examples of economic influence arise when a decision-
 maker directly allocates resources through rationing. Mundane
 examples abound. Since waiters ration scarce services among din-
 ers, regular diners may endeavor to acquire reputations for tying
 tips to service quality. Academic secretaries are often responsible
 to several professors, each of whom may attempt to influence his
 position in the queue through threats or favors. Parents, con-
 cerned with placing their children in a prominent university, may
 "pull strings" (or offer large contingent donations) to influence
 the decisions of admissions officials.

 More important examples of influence arise in cases of public
 policy formation and execution. Numerous government officials
 allocate a variety of contracts and licenses, for which the receipt
 of kickbacks, though often undocumented, is notorious (especially
 in many third world countries).3 More fundamentally, any indi-
 vidual who is affected by government policy has an incentive to
 influence the policymaker. This influence iswsometimes obviously
 illicit (as with ABSCAM), and at other times more indirect and
 subtle (as in the case of a government regulator who, upon retiring
 from government service, acquires a lucrative industry position).
 In such cases, one may think of the policymaker as auctioning
 off a complex action choice.

 Still another example arises when several parties voluntarily
 and independently bestow the right to make certain decisions
 upon a single, common agent, thereby creating a situation of
 influence. Delegated common agency is particularly prevalent in

 3. See, for example, Bhagwati and Desai [1970].
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 wholesale trade. Numerous products are marketed through mer-
 chandise agents and brokers (such as commission merchants and
 manufacturers' agents), who often represent the potentially con-
 flicting interests of several principals.4 In fact, the 1972 Census
 of Wholesale Trade revealed that, of $695 billion in wholesale
 trade, over $85 billion was transacted through merchandise agents
 and brokers ($19 billion through commission merchants and $23
 billion through manufacturers' agents). Similar institutions are
 also observed in a number of retail industries including travel,
 insurance, and real estate. While our model does not describe the
 process and strategy of delegation, it does apply to post-delegation
 behavior. One interesting implication of our model is its sugges-
 tion that common agency may serve to facilitate collusion among
 competitors (that is, a noncooperative choice of incentive schemes
 can lead to a cooperative marketing outcome, for example).

 The paper is organized as follows. Section II motivates the
 investigation with a simple example of a menu auction. Section
 III describes the model. Section IV presents our results. Finally,
 Section V closes the paper by discussing the implications of these
 results for some of the problems mentioned above.

 II. THE PROBLEM

 Consider the sale of an object (X), which can be divided into
 two pieces, labeled X1 and X2. Suppose that there are two bidders,
 A and B. who make nonnegative offers for the object or parts
 thereof. In particular, each bidder has the flexibility to name a
 price for the entire object, X1 alone, X2 alone, and nothing. Sup-
 pose that the auctioneer is indifferent with respect to the final
 allocation, and that bidders' gross payoffs (measured in dollars)
 are as follows:

 Value to A Value to B

 X1 6 5
 X2 5 6
 X 8 7

 Nothing 0 0

 4. While many manufacturers' agents refuse to serve two principals with
 directly competing products, product lines may be quite similar, or perhaps com-
 plementary. Even when substitutability between principals' products is low, con-
 flict still arises over the allocation of the agent's marketing efforts.
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 TABLE I

 Equilibrium (a) (b) (c) (d) (e) (f)

 A's offer for:

 nothing 0 0 0 0 0 0
 Xi 0 0 2 0 5 1
 X2 0 3 3 2 0 0
 X 7 6 6 5 7 3
 B's offer for:

 nothing 0 0 0 0 0 0
 Xi 0 3 3 3 0 1
 X2 0 0 2 0 2 2
 X 7 6 6 5 7 3
 Equilibrium allocation:

 A X X2 X2 X2 X1 X1

 B 0 X1 X1 Xi X2 X2
 Net payoffs:

 A 1 2 2 3 1 5
 B 0 2 2 2 4 4
 Auctioneer 7 6 6 5 7 3

 (notice that both A and B evidently regard X1, and X2 as substi-
 tutes). Clearly, the efficient allocation is to assign X1 to A, and
 X2to B.

 What allocations can arise in Nash Equilibrium? Table I
 exhibits six equilibria for this game, labeled (a) through (f) (there
 are others, as well).5 Note, in particular, that a variety of allo-
 cations are possible.

 How are suboptimal allocations sustained in equilibrium?
 Table I presents four examples of inefficiency: equilibria (a) through
 (d). In (a) each bids on X, but neither bids separately on the two
 component projects (given that the other fails to do so, this is
 optimal). In (b) and (d) each bids on X, and in addition A bids on
 X2, while B bids only on X1. A's failure to bid on X1 is justified
 by B's failure to bid on X2, and vice versa. In equilibrium (c) A
 and B bid on the entire object and both of its components sepa-

 5. In equilibrium (a), for example, bidder A's net payoff of 1 is the best he
 can do given B's strategy-he must offer at least 7 in order to get either X, X1,
 or X2 and of these X offers him the highest payoff (and a net payoff that is better
 than his receiving nothing). The auctioneer, on the other hand, is indifferent
 between giving X to A or B, and resolves his indifference in favor of A. (It is, in
 fact, a general property of equilibrium that the auctioneer always resolves his
 indifference in favor of the allocation with the highest social payoff. This problem,
 of course, also occurs in complete information auctions of a single indivisible object
 and, as there, is an artifact of the infinite divisibility of money in the model.)
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 rately. However, A's bid on X1 is not large enough to induce a
 "serious" bid from B on X2, and B's bid on X2 is not large enough
 to induce a "serious" bid from A on X1.

 Thus, it appears that inefficient allocations arise from the
 failure of bidders to make "serious" offers on every alternative.
 This failure is sustained by the norm of making "serious" offers
 only on particular alternatives. If, for instance, each bidder feels
 that his competitors will treat a project as indivisible, he will do
 so as well, even if potential divisibilities are known to exist.

 One might speculate that the introduction of uncertainty would
 eliminate these inefficient equilibria. For example, if each player
 expected the other to make serious offers on all alternatives with
 some small probability, it might be optimal for him to do so as
 well. This notion is difficult to formalize, however. In particular,
 trembling hand perfectness [Selten, 1975] does not eliminate the
 inferior equilibria. Similarly, the same difficulty would persist
 even if the bidders had incomplete information about each others'
 preferences. So long as the Bayes strategy of one player never
 entails making a serious offer on some alternative, it may be
 optimal for the other player to select a strategy with the same
 property.

 It may, of course, be possible to design an alternative auction
 mechanism that guarantees an efficient allocation. Our objective
 is, instead, to pursue a more detailed investigation of the prop-
 erties of allocations arising from first-bid menu auctions, since
 such mechanisms appear in a variety of contexts.

 III. THE MODEL

 Consider a game in which an "auctioneer" selects an action
 affecting the well-being of M "bidders," each of whom offers a
 menu of payments contingent on the action chosen. We denote

 the set of bidders by I = {i} 1, and subsets by J C 1. J will
 indicate the complement of J. However, in the specific case
 where J = {i}, we shall typically write " - i" instead of J. Possible
 choices for the auctioneer are given by a finite set S.6 Bidder i
 receives gross monetary payoffs described by the function gi: S -> R
 while the function d: S -> R indicates the disutility (in monetary
 terms) that the auctioneer experiences in taking each possible

 6. This assumption is made for ease of exposition only. All of our theorems
 hold when S is a compact set and the payoff functions {g}M 1 and d (defined below)
 are continuous.
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 action. In the case of construction contracting, for example, gi(.)
 would represent bidder i's costs of completing various portions
 and specifications of a project (a nonpositive number in this case)
 while d(*) reflects the auctioneer's preferences over project spec-
 ification (the allocation of contracts among bidders is, aside from
 price, presumably a matter of indifference to the auctioneer). For
 all s E S, J C I, let Gi(s) 1jej gi(s) For all J E X, let

 SJ - argmax [Ga(s) - d(s)],
 sES

 where SJ contains actions that yield the highest joint payoff to
 the auctioneer and members of group J. Define S- So; St con-
 tains efficient actions.

 In the extensive form of this game the M bidders simulta-
 neously offer contingent payments (negative in the case of con-
 tract bidding) to the auctioneer, who subsequently chooses an
 action that maximizes his total payoff. The strategy of each bidder
 consists of a function fi: S -- R; that is, he offers the auctioneer
 a monetary reward of f(s) for selecting action s. The set of feasible
 strategies for each bidder is given by

 ii = If{ I f(s) - ki(s) for all s C S}.

 The function ki(-) places lower bounds on the bids offered for
 each action. These lower bounds reflect the limited ability of bid-
 ders to extract payments from the auctioneer. We specify kit()
 quite generally in order to allow application of our model to the
 various problems mentioned above. For most applications certain
 bounds are quite natural. In particular, for competitive bidding,
 a bidder certainly cannot demand payment (represented by a nega-
 tive value of f) if the auctioneer fails to award him any portion
 of a project.

 For a particular strategy fi, bidder i's net payoff at each action
 s is given by the function ni(s) gi(s) - f(s). Following earlier
 convention, we define Fj(s) EiEJ f(s) and NJ(s) -iEj ni(s) for
 all s C S, J C d (thus, Nj(s) = GJ(s) - FJ(s)).

 In a first-price menu auction, the auctioneer chooses an action
 that maximizes his total payoff-i.e., given an element of lMl lii,
 the auctioneer selects an element of the set,

 I*({fi}M 1) argmax [Fl(s) - d(s)].
 sES

 Since a menu auction F is completely specified once the action
 space, reward spaces, disutilities, and gross payoffs have been
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 specified, we may write F = [S, {kj}M 1, {gj}M 1, d]. ({fQ}M 1, S0) is
 a Nash Equilibrium for the auction F if f? E ii for all i,
 sO J*({fQ}i 1), and-given {fj}1j-ino bidder i has a feasible
 strategy that would yield him a net payoff greater than ni(sO).

 Because it is notationally complex to carry around the ki(s)'s
 in all of our proofs, we establish here that any menu auction can
 be transformed into an equivalent auction where every bid is
 bounded below by zero. In particular, consider an auction F = [S,
 {kjjjl- {gj}M`, d]. Define a new auction F = [S, {k) } 1,
 {gI}RX1 d], where

 ki(s)--O for all i E AS E S;
 gi(s) gi(s) - ki(s) for all i E A, s E S;

 M

 d(s) d(s) - z ki(s) for all s E S.
 i= 1

 The following result establishes that these two games are stra-
 tegically equivalent.

 LEMMA 1. Consider strategies {fi}. 1 and {f }M 1, where for all s E S
 and i E

 f(s) = f(s) - ki(s).

 Then, fi is a feasible strategy for bidder i in auction f if and only
 if f is a feasible strategy for bidder i in game F. Furthermore,
 the net payoffs resulting from strategies fi}l 1 in auction F are
 identical to those resulting from strategies {f}M 1 in auction F.

 Proof of Lemma 1. Clearly f (s) ' 0 if and only if f (s) :-ki(s)
 so that fi is feasible in F if and only if fi is feasible in F. To verify
 our claim regarding net payoffs, first note that

 M

 so E argmax z fi(s) - d(s)
 seS L= 1

 if and only if

 M

 so E argmax A f(s) - d(s)
 -sES i= 1

 so that the same action results from {f}iM 1 in auction f as results
 from {ff}?!= in auction F. But gi(sO) - f (sO) = gi(s0) - fi(s0) for
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 every bidder i, so the net payoffs received by every bidder are
 identical (the net payoff of the auctioneer is identical as well).

 Q.E.D.

 Strategic equivalence in this sense is easily seen to imply
 that ({f}M-1, so) is a Nash Equilibrium of auction F if and only if

 s1, o) is a Nash Equilibrium of auction F. Furthermore, a
 similiar correspondence results for the refinement of the Nash
 Equilibrium set that we shall introduce below. Given this fact,
 we shall henceforth assume without loss of generality that
 ki(s) 0 for all i E <3 and s E S. We define

 -I{f I f(s) 0 for all s E S}.

 The model of first-price menu auctions that we have described
 here bears a strong formal resemblance to the problem of choosing
 between several mutually exclusive public goods. In particular,
 we can think of the auctioneer's actions as public projects; every
 player expresses a willingness to contribute to each project, and
 the project with the largest total support is implemented. Given
 this analogy, one might expect inefficiency necessarily to arise
 from a tendency for each player to "free ride" on the contributions
 offered by others with similar interests. As we demonstrate below,
 however, this is not the case.

 Nevertheless, the public goods analogy does prove useful. A
 large branch of the literature on public goods concerns the design
 of mechanisms that implement efficient social choices. While the
 objective of this literature differs from ours (we are concerned
 with description, rather than design) and while the game de-
 scribed above does not correspond to any mechanism discussed in
 the literature, it is illuminating to explore parallels.

 Consider, in particular, the Groves-Clarke mechanism.7 In

 this context, players would announce payoff functions 9i. Note
 that this is completely equivalent to announcing strategies in i;,
 up to a scalar. As in our game, the Groves-Clarke mechanism
 selects the project with the largest announced net payoff (reward).
 There are, however, some fundamental differences arising from
 the methods of calculating equilibrium payments. In our model,

 7. See Clarke [19711] and Groves [1973]. Our discussion specializes to the case
 of complete observability.
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 players pay the amount of their announcements f(sO). In the Groves-
 Clarke mechanism a player i pays the difference between the
 announcements of other players at the action that would be se-

 lected in his absence G6_(s-), where s-i E I*[{gj}>jj1, and their
 announcements at the equilibrium action, GOi(sO). Thus, a change
 in a player's announcement only affects his payoff insofar as it
 alters the public decision. Adding a constant to his announcement
 at all s, for example, has no effects (in fact, allowable announce-
 ments in the Groves-Clarke scheme entail a normalization). In
 contrast, changes in absolute levels do alter payoffs in first-price
 menu auctions. It is essentially for this reason that bidders in
 first-price menu auctions do not have dominant strategies, as do
 participants in the Groves-Clarke allocation scheme. Neverthe-
 less, as we shall see, reference to the Groves-Clarke mechanism
 provides some useful guidance in our analysis of equilibria.

 IV. RESULTS

 We begin our analysis by completely characterizing the set
 of Nash Equilibria for first-price menu auctions.

 LEMMA 2. Consider a first-price menu auction F. ({fP"t 1, s0) is a
 Nash Equilibrium if and only if

 (i) fi E 9; for all i E I

 (ii) so E It(fi}f

 (iii) Egi(s0) - d(s0)] - [gi(s) - d(s)] ' [Fj(s - Fi(sO))]
 for all i E X, s E S

 (iv) there exists si E I*({fi}M 1) such that f (si)

 = 0 for all i E <.

 Proof of Lemma 2. (a) Necessity. Condition (i) simply states
 that strategies are feasible. (ii) follows from payoff maximization
 on the part of the auctioneer. For condition (iii) note that in any
 Nash Equilibrium where the auctioneer chooses so, it must be the
 case that

 gi(s) - [F'(so) - d(s0)] - {[F-i(s) - d(s)]} - gi(sO) - f(s)

 for all s E S and i E 1. Otherwise, bidder i could do strictly better
 by playing f, where f differs from f, only at s (an action for which

 the above condition is violated), and fkj) = [FI(sO) - d(s0)] -
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 [Fi(s) - d(s)] + E four E > 0 sufficiently small (this is feasible
 since sl satisfies condition (ii)). Condition (iii) follows immediately
 by rearranging this inequality. For condition (iv), note that if

 there did not exist such an si, then bidder i could lower f(s) for
 all s E *I({If}= 1) without changing the auctioneer's choice. This
 would, of necessity, leave him strictly better off.

 (b) Sufficiency. Suppose that ({f1}4i 1, sO) is not a Nash Equi-
 librium. Then, without loss of generality, bidder i may play a
 feasible alternative strategy f that leaves him strictly better off

 when the auctioneer chooses some s E I*(fj, {fj}i j). Thus,

 (1) fi(g) + F i(s) - d(s) ' f(s) + Fti(s) - d(s) for all s E S

 and

 (2) gi(g) -4f(9) > gi(s&) - fi(s).

 Substituting for [gi(s) - gi(s0)] in (2) from condition (iii) implies
 that

 fi(g) < fi(sO) + [Fj(s0) - d(s0)] - [F-i(g) - d(s)]

 or, collecting terms, that

 f4() < [F*(s) - d(s0)] - [F-i(g) - d(s)].
 Using (iv), we have

 f(g) < [0 + F-i(si) - d(si)] - [FCi(g) - d~s).

 Since fi is feasible, condition (i) implies that

 fi(g) < [fi(sj) + F-i(si) - d(si)] - [F-i(g) -d()]

 or

 [fi(g) + Fji(g) - d(s)] < [fi(sj) + Fi(si) - d(si)].

 But this contradicts (1) for s = si.

 Q.E.D.

 Our simple example in Section II suggests that a large num-
 ber of contingent offers will typically satisfy the four conditions
 of Lemma 2. Are all of these equally plausible? We argue that
 they are not. The argument proceeds in two steps. First, we ana-
 lyze a subclass of equilibria with certain appealing characteris-
 tics. These equilibria may be "focal," particularly in situations in
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 which no communication occurs between bidders. This subset of
 equilibria is always nonempty and always results in an efficient
 action choice. In addition, we precisely characterize the net pay-
 offs obtainable in this class of equilibria. For the simplest menu
 auctions (two bidders, no inherent auctioneer preferences over his
 action set), these payoffs are uniquely determined. Second, we
 demonstrate that for situations in which nonbinding communi-
 cation is possible between bidders, these equilibria have a strong
 stability property, and are essentially the only equilibria pos-
 sessing this property.

 As suggested in Section III, our point of departure is the
 Groves-Clarke mechanism. Recall that for this mechanism, each
 player has a dominant strategy: reveal the truth. In essence, his
 announced willingness-to-pay the planner for changing from one
 project to another is exactly equal to the difference between his
 gross payoffs from these two projects. Similarly, in menu auctions,
 we might envision a bidder offering rewards that mirror the rela-
 tive values which he attaches to the various actions. This moti-
 vates the following definition:8

 DEFINITION. fi(.) is said to be a truthful strategy relative to so if
 and only if for all s E S. either

 (i) ni(s) = ni(s?),

 or,

 (ii) ni(s) < ni(s0), and fi(s) = 0.

 Q{fi}' 1, SO) is said to be a Truthful Nash Equilibrium if and
 only if it is a Nash Equilibrium and {fi}j 1 are truthful strate-
 gies relative to so.

 Note that in any truthful equilibrium each bidder offers a
 reward for action s that exactly reflects his "net willingness-to-
 pay" for s as opposed to so (for some actions, he may offer too
 much compensation due to the nonnegativity constraint in 5;).
 Truthful strategies are extremely simple, and truthful equilibria
 (if they exist) may be quite "focal."

 8. Here we define Truthful Nash Equilibrium only for the case where ki(s) = 0
 for all i and s E S. More generally, condition (ii) of the definition would be replaced
 by "(ii) ni(s) < ni(s'), and fi(s) = kg(s)." Note that the correspondence discussed
 above in relation to Lemma 1 holds for Truthful Nash Equilibria-that is,
 (iM 1, sO) is a Truthful Nash Equilibrium in the normalized game r if and only
 if ({filM ls0) is a Truthful Nash Equilibrium in the original game F.
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 In addition, as we now show, a bidder can essentially restrict
 himself to using truthful strategies without loss: every best-re-
 sponse set contains a truthful strategy.

 THEOREM 1. Consider a first-price menu auction F and any bidder

 i. For any set of offers by his opponents, {Jfj~ i, bidder i's best-
 response correspondence contains a truthful strategy.

 Proof of Theorem 1. Consider any element of i's best-response
 correspondence fi, and suppose that if fi is used, the auctioneer
 selects action sO. Suppose that fi is not a truthful strategy. Define
 the strategy fi such that fl(s0) = fi(sO) and fi is a truthful strategy
 relative to sO. Using this strategy must yield the same net payoff
 to i as does using fi. To see this, note first that if s' is still chosen
 under fi, then i receives the same net payoff as under fi. If s? is
 not chosen, then it must be that fi () > fi(.-), where ? is the auc-
 tioneer's preferred choice under fi. But, since fi is a truthful strat-
 egy relative to sO, this implies that

 gi(S) - fMg) = gi(s0) - M(s0) = gi(s0) - f(s0).

 Q.E.D.

 Thus, the set of Truthful Nash Equilibria is an appealing
 refinement of the Nash set. Our first task is to establish the
 existence of these equilibria, and to explore their properties. Later
 we shall show that whenever (implicit or explicit) communication
 among the bidders is possible, truthful equilibria also possess a
 strong stability property that strengthens the case for using this
 refinement.

 In what follows, it will be convenient to refer to the following
 sets of net payoff vectors. Let

 Hr(s) {n E RM I for all J C , NJ- [G(s) - d(s)]

 - [G7(sj) - d(sJ)]},

 where sJ E S?J, NJ = liEjn., and by convention G(sl) - d(s^)
 min8?8 d(s). We also define the Pareto efficient frontier of Ulr(s):9

 EF(s) {n C RM I n E lHr(s) and there does not exist

 n' E [Ir-(s), with n' - n}.

 9. We adopt the convention that for two vectors x and y, x - y means that
 Xi -i for all i and x * y.
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 Clearly the set Er(s) is nonempty. Also note that for s', s" E S8,
 [Ir(s') = [Ir(s") Ilr(S*) and Er(s') = Er(s") = Er(S*).

 We are now in a position to state our fundamental result
 concerning the set of Truthful Nash Equilibria.

 THEOREM 2. Consider a first-price menu auction F. In all Truthful
 Nash Equilibria the auctioneer selects so E S*, and the bid-
 ders receive payoffs in Er(S*). Furthermore, any net pay-
 off vector n E Er(S*) can be supported by a Truthful Nash
 Equilibrium.

 Proof of Theorem 2. The proof can be found in the Appendix.

 It should not be too surprising that truthful equilibria involve
 an efficient action choice-the auctioneer internalizes variations
 in aggregate payoffs. However, given the many discontinuities
 and nonconvexities apparent in the structure of our model, ex-
 istence is somewhat more surprising.10 In addition, Theorem 2
 provides a nice characterization of the set of net payoffs that
 bidders can receive in a truthful equilibrium: these payoffs must
 lie in the set Er(S*). In fact, for first-price menu auctions in which
 there are only two bidders and the auctioneer has no inherent
 preferences over his decision set, Theorem 2 leads to the following
 result.

 COROLLARY 1. Consider a first-price menu auction F, in which
 there are two bidders and the auctioneer has no inherent
 preferences over his action set. There exist unique Truthful
 Nash Equilibrium bids (so is also unique if S* is a singleton),
 and in a truthful equilibrium bidder i receives a net payoff

 of G(S*) - gj(si) (where j + i and skESj).

 Proof of Corollary 1. In this special case Ilr(S*) involves three
 constraints:

 (3) ni G*(S*) - g2(s2)
 (4) n2 G*(S*) - g1(sl)
 (5) ni + n2- G (S*).

 10. It is also interesting to note that Truthful Nash Equilibrium strategies
 correspond to a set of nonlinear Lindahl prices-given their strategies, the in-
 terested parties all prefer that the auctioneer pick allocation sO. For a more general
 discussion of Lindahl equilibria in public good environments devoid of linear
 structure, see Mas-Colell [1980].
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 However, by the definitions of s' and S2, it is clear that (5) is
 redundant. The result then follows from the definition of Er(S*)
 and Theorem 2.

 Q.E.D.

 Corollary 1 allows us to note an interesting aspect of the
 Truthful Nash Equilibrium net payoffs for these simple menu
 auctions: they are identical to the Groves-Clarke mechanism equi-
 librium net payoffs (ignoring lump sum transfers). The reason for
 this is fairly straightforward. As we noted above, in the Groves-
 Clarke mechanism bidder 1 would pay [g2(s2) - g2(s*)] (where
 se E S*). Here, in a Nash Equilibrium that implements s*, bidder
 1 must have no cheaper way to ensure that s* is chosen than by
 using his equilibrium strategy. But, when bidder 2's offer is truth-
 ful, this involves an offer for s* by bidder 1 of exactly [g2(s2) - g2(s*)]
 (since he will set fi(s2) = 0).

 We have argued above that truthful equilibria are appealing,
 perhaps even focal. For environments in which bidders can com-
 municate with each other, a strong additional justification for
 focusing our attention exclusively upon truthful equilibria is
 available.

 One natural question to ask is whether, in a particular equi-
 librium, any coalition of bidders has an incentive to communicate
 among themselves, with the intention of arranging a stable, mu-
 tually preferable joint deviation. We wish to restrict attention to
 the set of equilibria for which no such coalitional deviation is
 possible. This stability requirement corresponds to the notion of
 a Coalition-Proof Nash Equilibrium, as introduced in Bernheim
 and Whinston [1984]. (Peleg [1984] has independently developed
 the same notion, which he labels "quasi-coalitional equilibria".)
 As this may be an unfamiliar concept, we provide a brief expo-
 sition here and refer the reader to these other papers for further
 discussion.

 Formally, we define coalition-proofness as follows. First, for
 any subgroup J and strategies {flkgj, we define the subgroup J
 component game relative to {fi}iej as follows:

 ]FffibiEJ = (S,{gi}heJ, {kiiEEJ, d -
 iEJ

 That is, F/r{f}iEj is the restriction of the game r to bidders in
 subgroup J, where the strategies of the bidders in J are held fixed.
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 Note that {fi}gij causes the auctioneer to act as though he has
 preferences over S.

 DEFINITION. (i) In a first-price menu auction F with a single bidder
 (M = 1), (f?, sO) is a Coalition-ProofNash Equilibrium if and
 only if it is a Nash equilibrium.

 (ii)-(a) For a first-price menu auction F, where M> 1,

 ({f?}m i,sO) is self-enforcing if for all J C At (where J )
 ({f?}9ij,sO) is a Coalition-Proof Nash Equilibrium in the
 subgroup J component game F/{ff}jzi.

 (ii)-(b) ({f?}j. 1, sO) is a Coalition-Proof Nash Equilibrium
 if it is a self-enforcing Nash Equilibrium and offers net pay-
 offs to the M bidders that are not Pareto dominated by any
 other self-enforcing Nash Equilibrium.

 Note that this definition is recursive. For one player, any
 maximizing choice is obviously coalition-proof. For two players,
 no Nash Equilibrium can be upset by single player coalition, but
 only Pareto-undominated Nash Equilibria cannot be disturbed by
 two-player coalitions." For M = 3, a Nash equilibrium is coali-
 tion-proof if each pair of players achieves a Pareto-undominated
 equilibrium in the game formed by taking the action of the third
 player as given, and if the resulting payoffs in the three-player
 game are not Pareto dominated by any other equilibrium satis-
 fying this condition. For M > 3 players, we require that for all
 groups of size less than M, no coalition-proof equilibrium (sus-
 tainable agreement) exists in the component game for that coa-
 lition which makes all of its members better off. Pareto-undom-
 inated members of this set of M-player equilibria are designated
 coalition-proof (Pareto-dominated members can be upset by the
 entire set of players).

 11. Note that in considering joint deviations by coalitions of bidders, we have
 implicitly allowed them to resolve the auctioneer's indifference within the set I*.
 While a recalcitrant auctioneer might refuse to resolve his indifference in the
 desired way, the bidders could eliminate this indifference by simply adding an
 infinitesimal payoff to the desired allocation. This would, of course, no longer be
 an equilibrium (for the two-bidder case; self-enforcing, more generally), since the
 addition can be arbitrarily small. Once again, however, this problem is an artifact
 of the infinite divisibility of money in the model and disappears if money has
 some smallest unit (however small). This assumption also implies that the auc-
 tioneer is a completely passive follower and need not be considered in searching
 for mutually beneficial coalitional deviations.
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 We can now prove a striking result: all Truthful Nash Equi-
 libria are coalition-proof, and furthermore, the set of net payoffs
 for the bidders that can arise in Coalition-Proof Nash Equilibria
 exactly coincides with those arising in Truthful Nash Equilibria.
 Thus, truthful equilibria not only possess an inherent appeal, but
 are also (essentially) the only Nash Equilibria that are stable
 when (nonbinding) communication is possible.12

 THEOREM 3. Consider a first-price menu auction F. In all Coali-
 tion-Proof Nash Equilibria the auctioneer selects SO E S*, and
 the bidders receive payoffs in Er(S*). Furthermore, all Truth-
 ful Nash Equilibria are coalition-proof. Thus, any payoff vec-
 tor n E Er(S*) can be supported by a Coalition-Proof Nash
 Equilibrium.

 Proof of Theorem 3. The proof can be found in the Appendix.

 Note that any equilibrium which is not truthful, but which
 yields truthful equilibrium payoffs, differs from a truthful equi-
 librium in an irrelevant way. Returning to our earlier example,
 column (f) in Table I is the unique Truthful Nash Equilibrium
 (recall that for the case of two bidders, and no auctioneer pref-
 erences, Er(S*) is a singleton). One may, however, vary bids for
 actions outside of I* without affecting the equilibrium (e.g., A
 could bid 1 for X2). While truthful equilibria are therefore not
 literally the only stable equilibria, truthful outcomes are the only
 stable outcomes.

 Finally, note that Theorems 2 and 3, through their use of the
 set Er(S*), provide a remarkably simple way to calculate equi-
 librium net payoffs in menu auctions. Consider, for example, the
 following menu auction with three bidders, three possible actions,
 and no auctioneer preferences over these choices.

 SI ' 10 10 10
 S2 16 13 0
 S3 0 0 13

 12. By "essentially" we mean that the only stable (coalition-proof) equilibria
 that are not truthful differ from Truthful Nash Equilibria in an irrelevant way
 off the equilibrium path.
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 For this game, the set of Truthful (and Coalition-Proof) Nash
 Equilibrium net payoffs is given by (observe that several of the
 constraints in JR7(S*) turn out to be redundant):

 n1 + n2- 17
 ni ' 10

 n2 10

 n3= 1.

 In addition, we can of course also easily construct the set of Truth-
 ful Nash Equilibrium strategies.13

 V. APPLICATIONS

 We have already described the application our menu auction
 model to situations of contract bidding. In this section we briefly
 discuss the implications of our results for some of the other prob-
 lem areas outlined in the introduction.

 A. Share Auctions

 One special case of our model occurs when ownership shares
 for an item are auctioned off. Such "share auctions" have, for
 example, been proposed in the past as an alternative means of
 auctioning leases on Outer Continental Shelf tracts (see Wilson
 [1979]). For simplicity, suppose that there are two bidders, 1 and
 2. Then, a share auction can be represented by setting

 S {(xl,x2) E R21 + X2 1, X10? X2 0}

 ki(s) 0 forallsES, i= 1,2

 d(s)-0 forallsES.

 It remains, of course, to specify the gross payoff functions
 (g1,g2). Suppose, first, that the value of the entire item is known
 with certainty to be V (or, alternatively, that both bidders are
 risk-neutral, have no proprietary information, and attach an ex-
 pected value to the item of V). Then gi(s) V * xi for i = 1,2; that
 is, the auction is one of pure division. For this auction S* = S,

 13. It is interesting to note that, in this example, the set of Pareto-undomi-
 nated Nash Equilibria does not correspond to Er(S*). The payoffs (nj, n2,
 n3) = (16,0,0), for example, can be supported in a Nash Equilibrium that imple-
 ments S2. However, as Theorem 3 indicates, the strategy profile that does this is
 vulnerable to coalitional deviations, making it an unlikely outcome in situations
 with possibilities for communication.
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 and our results imply that the auctioneer's payoff, which is gen-
 erally given by [gl(sl) + g2(S2) - G(S*)] is exactly equal to V
 (since gl(sl) -= g2(S2) = G(S*)). Thus, the auctioneer gets exactly
 the same revenue in the share auction as he would by selling the
 item in a "unit" auction (where S {(1,0),(0,1)}).

 Interestingly, this conclusion is at odds with that arrived at
 by Wilson [1979], who argues that an auctioneer can do much
 worse (in terms of revenue) in a share auction of an item of certain
 value than he does in a unit auction of that item. The reason lies
 in a slight difference between Wilson's share auction mechanism
 and ours. In Wilson's share auction model, bidders name demand
 schedules as a function of the price per share xi(p), and the auc-
 tioneer picks a price to "clear the market"; i.e., such that
 xl(p) + x2(p) = 1. This prevents certain natural bidding strate-
 gies. For example, if bidder 2 offers the bids depicted in Figure
 I, bidder 1 can only acquire the entire item by paying V. He cannot
 get it by offering say V - E (as he can in our model) because that
 price will not then clear the market. In fact, his best response is
 then to offer the same set of offers as bidder 2 so that the auc-
 tioneer's revenue is V/2 (this is actually Wilson's equilibrium).

 Wilson then demonstrates by example that the same result
 can hold when the value of the item is uncertain, and bidders are
 risk-averse. Let us now examine Wilson's example using our model.
 The value of the item is stochastically distributed, V - N(m,o2).
 Bidder i has an expected utility function over net payoffs of the

 X2( p)

 X2(p) I -(p/V)

 0
 V P

 FIGURE I
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 form u(n) = - e - rin. Then we can write the (certainty equivalent)
 gross payoff to bidder i from xi shares as"4

 gi(xij - xi) = mxi - (rJI2)(xio)2.

 Simple calculations reveal that

 S = {(xi,xi) E SI Xi = argmin z - 12} -zEE[0,1] L rjo*2

 S* = {(X1,X2) E S X1 = r2/(r1 + r2)}.

 Now, to begin, suppose that the values of m,or,rj, and r2 are such
 that s' = (1,0) and s2 = (0,1); that is, both bidders' certainty
 equivalent gross payoffs are monotonically increasing in the share
 they obtain. For these cases, it is easy to see that the auctioneer

 does worse in the share auction than -in a unit auction. Suppose
 that 0 + r, ' r2. Then his revenues in a unit auction are exactly
 g2(0,1). In a share auction, on the other hand, he receives

 gl(Sl) + g2(S2) - GI(S*) = g2(0,1) + [g1(1,0) - G(S*)],

 which is strictly lower, since (1,0) E S*. Note, however, that the
 share auction results in an efficient allocation, while the unit
 auction does not.

 Once an Si involves an xi < 1, however, we can also find cases
 where the revenue from a share auction is higher than that from
 a unit auction. The reader can easily verify that this is true in

 the following two sets of cases: {r, = 0, r2 > (m/U2)} and {r, = r2> (3/
 2)(mlo.2)}.

 What can we say about the net payoffs received by the two
 bidders in the share auction? First, since gi(si) is decreasing in
 ri, we see that the more risk-averse bidder always receives a lower
 equilibrium net payoff than the less risk-averse bidder. Second,
 while bidder i's net payoff increases when ri falls, it does not
 necessarily increase when rj rises because this affects both gj(s')
 and G*(S*). Finally, though the' more risk-averse bidder neces-
 sarily does better in a share auction than he would in a unit
 auction of the items (he receives zero in the unit auction), this is
 not the case for the less risk-averse bidder. To see this, consider

 the case where {r, = 0, r2 > (m/o2)}. Then, since S* = (1,0) and
 g2(S2) > g2(1,0), bidder l's net payoff in the share auction

 14. We assume, as did Wilson, that resale of the shares won in the auction
 is not possible.
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 [G(1,0) - g2(s2)] is lower than his unit auction payoff of

 [G,(1,0) - g2(1,0)].

 B. Economic Influence

 In cases where a decision-maker accepts contingent rewards
 or bribes offered by interested parties, it is natural to model his
 decision as being governed by a first-price menu auction. One
 might then inquire, which party has the greatest influence (and
 in what sense is it "greatest"), and which parties fare well in
 equilibrium?

 Our first problem is to select a meaningful measure of influ-
 ence. One candidate is the degree to which the decision-maker's
 choice respects the particular party's preferences. When utility is
 perfectly transferable (as in our model), Theorem 2 establishes
 that, regardless of payoffs, no interested party will be more suc-
 cessful (in this sense) than any other, since the joint payoff-max-
 imizing action is always chosen.

 Yet perfectly transferable utility may abstract from the fea-
 tures of primary interest in many situations of economic influence.
 A particular party might, for example, be in a position to confer
 some great boon upon the decision-maker at relatively little cost
 to himself. The simple case of linearly transferable utility is easily
 handled within our framework. Suppose as before that each in-
 terested party i receives gross payoffs gi(s), and selects a set of
 offers fi(s). However, we now allow the effectiveness of this com-
 pensation to differ between players. Specifically, we shall assume
 that the decision-maker maximizes

 M

 Ei fij(s).
 i=1

 It is easy to see that this game is strategically equivalent to a
 game of perfectly transferable utility, where interested party i
 receives gross payoffs oxigi(s). Theorems 2 and 3 then imply that
 the truthful, coalition-proof Nash equilibria will involve the de-
 cision-maker selecting

 M

 argmax a igi(s).
 sES i=1

 In other words, the decision-maker selects a Pareto-efficient ac-
 tion (defined in terms of gross payoffs, with no transfers permit-
 ted), where the corresponding weights are simply the efficiency
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 parameters of interested parties' compensation technologies. Par-
 ties who can compensate agents at low cost will have more influ-
 ence, yet the action chosen will nevertheless remain Pareto ef-
 ficient.

 Next, how well does interested party i fare in equilibrium?
 The definition of Er(S*), combined with our results, implies that
 subgroup J's equilibrium payoffs depend only upon the maximum
 joint payoff, and upon J's maximum payoff. Thus, no change in
 i's payoff that leaves the maximum joint payoff unaffected will
 alter i's equilibrium net payoff. In particular, increases in i's
 valuation of his most preferred action does not in general provide
 him with more bargaining leverage-it only hurts his opponents.
 In addition, notice that net payoffs are completely insensitive to
 the distribution of gross payoffs at the equilibrium action (so long
 as changes in the distribution do not affect the identities of SJ)-
 surprisingly, interested parties who like the equilibrium action
 most do not necessarily fare the best.

 Finally, we have the following interesting, and intuitive, con-
 clusion concerning the auctioneer's equilibrium compensation: his
 payoff rises with the level of conflict between the bidders. In the
 case of two interested parties and no inherent decision-maker
 preferences, for example, the decision-maker's equilibrium payoff,
 gA(sA) + gB(sB) - G5(S*), increases when the preference of either
 interested party for his favorite action becomes stronger relative
 to the joint maximizing action. In a game of pure division, for
 example, the decision-maker extracts all of the surplus [since

 gj(si) = G5(S*) for j = A,B].

 C. Delegated Common Agency

 The task of modeling situations in which several parties vol-
 untarily bestow the right to make certain decisions upon a single,
 common agent is quite complex. In particular, the determination
 of interested parties, agent action sets, and the market environ-
 ment is endogenous to the process of agency formation. When an
 agent turns down an offered contract, the rejected principal in
 effect takes his choice set with him, perhaps hiring another agent,
 or making decisions independently.

 Nevertheless, our results may have some provocative impli-
 cations for situations of delegated common agency. Here, we ig-
 nore the process of delegation, and consider an agent with some
 well-specified clientele-an environment that is, effectively, a sit-
 uation of economic influence. Within this admittedly oversimpli-
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 fied context, there are three important conclusions to be drawn
 from our model.

 First, common marketing agents and brokers may serve as
 facilitating devices for collusion. Delegated actions are selected
 so as to maximize total profits for all principals. In cases where
 there is competition between agents, any profits extracted by the
 agent are presumably passed back to the principals in some form,
 so there is a clear incentive for competitors to choose a common
 agent.

 Second, despite this collusive result, there is every appear-
 ance of competition. Principals both choose their agents and select
 their reward schedules noncooperatively. There is no need for any
 explicit agreement between the principals, nor must the agent
 bind himself to specifically act in their joint interest. Collusion
 arises from strategic interaction.

 Third, the model provides one possible explanation of why
 common sales agents are usually compensated on the basis of
 outcomes, rather than receiving fee-for-service payment. Tech-
 nically, we have allowed each principal to condition compensation
 on the action that the agent takes for every other principal. One
 might think that this smacks of collusion. Recall, however, that
 in a truthful equilibrium a principal pays rewards based only on
 his own gross payoffs. Thus, the appearance of noncompetitive
 behavior is avoided by conditioning compensation only on per-
 sonally relevant outcomes (such as sales) rather than upon ac-
 tions. Fee-for-service would not permit such implicit conditioning
 of compensation on actions taken by the agent for others. Thus,
 while some have explained outcome-based compensation as aris-
 ing due to asymmetric information, another possible explanation
 is available: such compensation facilitates lawful collusion.

 To take a specific example, suppose that the principals are
 oligopolists producing imperfectly substitutable products in a con-
 stant variable costs industry. Each firm chooses its price pi and
 marketing level mi. Sales are then given by xi = si(p,m) where
 p and m are the vectors of prices and marketing efforts chosen
 by all firms. A Nash Equilibrium in the absence of agency consists
 of vectors p* and m* such that, for all i (p-', mi*) maximizes

 si(pip*i, mimM*.) (pi - cd) - mi.

 Now suppose that these firms hire a common marketing agent.
 In equilibrium, marketing effort will be chosen cooperatively,
 subject to a noncooperative choice of price. The cooperative levels
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 of marketing efforts will be implemented by truthful strategies.
 What do these look like? Recall that each firm has transferred

 the marketing decision, and with it the cost mi, to the agent.
 Given the noncooperative equilibrium choice of prices, its profits
 are now given by si(p*,m) * (p- - ci).15 Thus, with a truthful strat-
 egy, for each additional unit sold, principal i pays the agent
 (pa - ci). This is precisely a commission schedule, where the com-
 mission fee is set equal to the excess of price over marginal cost.
 Thus, commission compensation arises endogenously and has the
 effect of facilitating complete collusion in marketing. Finally,
 recall that although the agent receives the full surplus (pt - ci)
 from selling each unit, competition presumably drives his profits
 to zero-the surplus is returned to the principals in the form of
 franchise fees (or "complementary services").

 APPENDIX

 The following result provides a useful characterization of EF(s).

 LEMMA A.1. n E Es(s) if and only if n E HFl(s) and for all i there

 exists J C $, i E J such that

 N= [Gi(s) - d(s)] - [GW(s.) -d(sJ)],

 where sj E S~J, NJ ni.
 iEJ

 Proof. (i) Assume that n E Er(s). If for all J with i E J we

 have NJ < [GI(s) - d(s)] - [G (sj) - d(sJ)], then it would be
 possible to increase ni slightly without moving outside of Hlu(s)-
 a contradiction.

 (ii) Assume that n & Hl(s), but n t EF(s). Then there exists
 h E Er(s) with h ' n. Without loss of generality, assume that
 hi > n1. Consider n = (hi, n2, ... I nM). Since fi _ n, n E Hl(s).
 But this cannot be unless for all J C I with 1 & J we have NJ <
 [G(s) - d(s)] - [GJ(sJ) - d(s7)].

 Q.E.D.

 We now prove our central results concerning coalition-proof
 equilibria.

 Proof of Theorem 2. First, we show that in any truthful equi-
 librium, the decision-maker selects an action in S*. Assume that

 15. Note that prices are not driven down to costs due to our assumption that
 the goods are imperfect substitutes.
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 this was not the case and let s? E S* be the agent's choice. Then,
 since strategies are truthful, we have for s* E S*:

 fi(s*) gi(s*) - [gi(s0) - fi(s)].

 Summing,

 FI(s*) ' G(s*) - G(s') + F5(s0)
 so

 Fi(s*) - d(s*) - {[G1is*) - d(s*)] - [G,(s) - d(s0)]}
 + [FI(s0) - d(s0)] > FI(s0) - d(s?)

 a contradiction.
 Next we argue that if [{jf}ij,s*] is a truthful equilibrium,

 then for all J C

 NJ(s*) ? [G(s*) - d(s*)] - [G-(s7) - d(sJ)]

 (i.e., the payoffs are in LIF(s*)). We see this as follows:

 Fs(s*) - d(s*) _ F(sJ) - d(sJ)
 so

 FJ(s*) + FJ(s*) - d(s*) ? Fj(sj) + F-(sj) - d(s')

 'Fj(sj) - d (s)

 ' [Gj(sj) - GJ(s*) + FJ(s*)] -d(sJ),

 where this last inequality comes from the fact that, since strate-
 gies are truthful, for eachj E J, fj(sj) ' gj(s') - gj(s*) + fj(s*).
 Rearranging this last inequality yields the desired result.

 Now we argue that the payoffs are actually in EF(s*). Choose
 some i. In an equilibrium, there exists si E I*({fL}ij,) such that
 ~sd) = 0. Take J = {j ( I I &(sj) = 0}; this will obviously in-
 clude i. Since both si and s* belong to J*({fi}i), we know that

 FI(s*) - d(s*) = FI(si) - d(si)

 so

 FJ(s*) + FJ(s*) - d(s*) = FJ(si) + Fj(si) - d(si),

 which yields, by the definitions of J and J (note that since strate-

 gies are truthful, forj E Jwe have fj(si) = gj(si) - gj(s*) + fj(s*)),
 FJ(s*) + FJ(s*) - d(s*) = [Gj(si) - GJ(s*) + Fwj(s*)] - d(si)

 or, rearranging,

 NJ(s*) = [G(s*) - d(s*)] - [G7(si) - d(si)].
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 Now, we can show that si E SJ. Suppose not. Then there exists g
 such that

 GJ(S) - d(s) > G7(si) - d(si).

 Since Ga(s) ' GJ(s*) - FJ(s*) + Fj(s) for all s E S and with
 equality for s = si, we have

 Gj(s*) - F-(s*) + FJ(S) - d(s)

 > GJ(s*) - Fj(s*) + F-(si) - d(si)

 or,

 Fj(9) - d(g) > Fj(si) - d(si).

 Since FJ(?) ' Fj(si), we have a contradiction to si E I*[{fi}iX].
 But this establishes that for each i, there exists J C I with i E J
 such that the net payoff constraint for J binds. By Lemma A.1,
 net payoffs must lie in El(s*). This establishes the first part of
 the theorem.

 Now choose any n E E-(s*) and consider the truthful strate-

 gies given by fi(s) = max[gi(s) - ni,O] for all s E S, i E 1. Note
 that since ni < [G(s*) - d(s*)] - [G-i(s-i) - d(s-)], we have

 gi(s*) - ni ' {[G-i(s-') - d(s-')] - [G-i(s*) - d(s*)]}
 ?0

 since the bracketed term is positive by definition. Hence
 ft(s*) = gi(s*) - ni, or gi(s*) - fi(s*) = ni. Thus, if this is in fact
 a Nash Equilibrium supporting s*, it yields the correct net payoffs.

 We now check that [{ff}j. 1,8*] is a Nash Equilibrium. To do
 this, we verify each condition in Lemma 1.

 (i) fl(s) _ 0 for all s E S by construction.
 (ii) Suppose that the agent receives higher total utility at

 some s s8*. First, note that F$ (s*) - d(s*) = G(s*) -
 N - d(s*). Now, divide the principals into two groups: for i E J,
 f1(s) = gi(s) - ni; for i E J, fl(s) = 0. Then we know that

 Gj(s) - NJ - d(s) > G*(s*) - d(s*) - Ns
 Collecting terms,

 NJ > [G(s*) - d(s*)] - [GJ(s) - d(s)].

 Since for sJ E SJ

 Gj(sj) - d(sJ) - GJ(s) - d(s),

 we have

 NJ > [Gs(s*) - d(s*)] - [Gj(sj) - d(sJ)
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 which contradicts that n E Ill(s*).

 (iii) f (s) ' gi(s) - ni= gi(s) gi(s*) + f (s*),
 so

 gt(s*) - gi(s) ' f(s*) - f(s).

 Since

 [Fi(s) - d(s)] - [FW(s) - d(s*)] ' 0
 we have

 gi(s*) - gi(s) > [Fl(s) - d(s)] - [F(s*) - d(s*)]

 + f (s*) - f(s) = [Fei(s) - d(s)] - [Fi(s*) - d(s*)].

 To prove property (iv), we shall need the following result.

 LEMMA A.2. Assume that f (s) = max[gi(s) - n-,O] for all sE S
 and all i E 1, and that NJ - [G(s*) - d(s*)] [Gj(s7) -
 d(sJ)]. Then

 (a) Fs(sJ) - d(sj) = F,(s*) - d(s*)
 (b) For all i E J, f (s7) = 0

 (c) For all i E J, f (sJ) = gi(sg') - ni.

 Proof: We know that

 GJ(s*) - FJ(s*) = [G(s*) - d(s*)] - [G,(sj) - d(sJ)].
 We also know that

 (A.1) Fj(sW) 0
 so

 (A.2) FJ(s*) - [Gj(sJ) - d(sJ)] - [GJ(s*) - d(s*)] + Fj(s7).
 Further, we know that

 (A.3) Fj(s,) ' Gy(sJ) - NJ

 which, substituting for NJ and rearranging, yields

 (A.4) FJ(s*) ' [GJ(s*) - G7(s7)] + Kj(s').
 Summing (A.4) and (A.2), we find (rearranging) that

 (A.5) Fs(s*) - d(s*) ' Fi(sJ) - d(sJ).
 But we know from part (ii) that this cannot be <, so we must

 have equality. This establishes part (a). Parts (b) and (c) follow
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 immediately-if either (A. 1) or (A.3) holds with strict inequality,
 then (A.5) must hold with strict inequality, contradicting (ii).

 Q.E.D.

 Now we return to the main theorem.
 (iv) Since n E Er(s*), we know (Lemma A.1) that for all i,

 there exists J C X with i E J such that

 NJ= [Gi(s*) - d(s*)] - [Gy(s,) - d(sJ)].
 But then, by Lemma A.2, F5(sJ) - d(sJ) = F$(s*) - d(s*),

 and fi(si) = 0. Thus, any n E Er(s*) can be supported in a Truth-
 ful Nash Equilibrium. Q.E.D.

 Proof of Theorem 3. The argument is by induction. The case
 of M = 1 is trivial. Now, assume that the theorem is true for
 M= 1 ... ., K - 1 and consider the case of M = K?_ 2.

 We first argue that any self-enforcing set of offers by the K
 interested parties that results in decision so, must offer net payoffs
 to the interested parties that lie in flr(sO). By the definition of a
 self-enforcing strategy profile, and the fact that the theorem is
 true for M < K, we see that for any nonempty subgroup JC },

 SO E arg max Gj(s) + FJ(s) - d(s).
 seS

 From this, we find that for all s E S. and J C <,

 Fj(sO) - Fj(s) _ [G7(s) - d(s)] - [Gy(sO) - d(s0)].

 Since FJ(s) ? 0, we see that

 GJ(s?) - FJ(s?) - [G(s?) - d(s?)] - [GJ(s) - d(s)].

 In particular, setting s = sJ7 and substituting NJ = GJ(s?)
 - FJ(s?) yields

 (A.6) NJ ' [G5(s?) - d(s?)] - [G7(s,) - d(sJ)] for all J C }.

 This must be true for all J C }. Furthermore, it is obvious that
 this condition must hold for J = $, since (choosing _ E SJ),

 (A.7) F5(so) - d(so) ' - d(s).

 (otherwise the decision-maker would select s). From (A.6) and
 (A.7), we conclude that any self-enforcing set of offers that result
 in the decision-maker choosing action s?, must yield net payoffs
 that lie in flr(s?).

 Next, note that since G*(s*) - d(s*) > Gj(s?) - d(s?) where
 s* E S* and s? E S*, any point in fpr(sO) is strictly dominated by
 a point in Er(S*). Therefore, by establishing that any net payoff
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 vector in EF(S*) can be supported by a Coalition-Proof Nash Equi-
 librium, we shall have established that all Coalition-Proof Nash
 Equilibria support net payoff vectors in Er(S*). We now turn to
 demonstrating this fact.

 We showed in Theorem 2 that any net payoff vector in
 Er (S*) can be supported by a Truthful Nash Equilibrium. If we
 can show that any such strategy is also self-enforcing, then, since
 all self-enforcing strategy profiles offer net payoffs in lIl(S*), these
 Truthful Nash Equilibrium strategies will also constitute, a Coa-
 lition-Proof Nash Equilibrium. Note, in addition, that by Theorem
 2 this implies that all Truthful Nash Equilibrium are coalition-
 proof.

 Now, consider an n E Ev(S*) and the truthful set of offers:

 Mt(s) = max[gi(s) - ni,O] for all s C S and i E
 We have already seen above that these strategies constitute a
 Truthful Nash Equilibrium in which the decision-maker chooses
 s* E S*. We proceed in two steps. First, we must show that for
 all J, s* is the joint maximizing action for FIffi}ij. Specifically,
 we must verify that s* maximizes Gj(s) - d(s) + FJ(s). We
 know that

 Fl(s) - Ga(s) - NJ = Ga(s) - GJ(s*) + FJ(s*)

 or, rearranging,

 GJ(s*) - FJ(s*) ? GJ(s) - Fl(s).

 Further, we know that

 FI(s*) - d(s*)' F(s) - d(s).
 Summing these inequalities, we get

 GJ(s*) + FJ(s*) - d(s*) ' Gi(s) + Fiy(s) - d(s)

 as desired.
 The second step is to show that for all J C X, (ni)iEj C

 Er1f>j~s*. IIf this is true then, by the induction assumption, no
 subgroup can make a credible (self-enforcing) counterproposal
 that weakly benefits all of its members; hence the equilibrium is
 self-enforcing.

 Choose any i c J, and T with i E T such that

 NT = [GI(s*) - d(s*)] - [GY(sy) - d(sT)].
 Noting that

 NT = NTn J + NTn J

 and

 NTnJ = GfnJ(S*) - FTni(s*)
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 we see that

 NTnJ = [GJ(s*) + F'j(s*) - d(s*)]

 - [G-TnJ(ST) + FijsT) - d(s)]_

 + {[GTnJ(S*) - `TnJ(S - [GTnJ(S T) -Tn(ST)]}

 + FTnj(s T).

 By Lemma A.2(c), the term in curly brackets is identically zero,
 since (T n J) C T. Also, by Lemma A.2(b), the last term is zero
 since (T n J) C T. So,

 (A.8) NTnJ = [GJ(s*) + Fj(s*) - d(s*)]

 - [GTnj(ST) + F'J(S ) - d (sT)].

 Now we argue that ST maximizes G-j (s) + Fyj(s) - d(s).
 Notice first that

 FJ(sT) = Fj(sT) - Fj(ST)
 = F,(sT) - FTnj(ST) - FTnJ(S T)
 = Fj(s) - G-TnS(S) + N7nj

 Now suppose that there exists s such that

 G-Tn(s) + Fij(s) - d(s) > G-Tni(S) + ij-(s) - d(sJ).

 Substituting, we know that

 Gjnj(s) + FJ(ST) - d(sT) = NTnJ + [F(sT) - d(sT)]

 = N7;n + [FI(s*) -d(s*)]

 by Lemma A.2 (a). Further, sinceN7;nj ' G-nj(s) - FTnj(s), and
 FTnJ(S) ? 0, we have

 G-TnJ(S) + FJ(s) - d(s)
 > GTnJ(S) - F'Tn(S) - FTnJ(S) + [FI(s*) - d(s*)].

 Collecting terms,

 Fi(s) - d(s) > FI(s*) - d(s*),

 which is a contradiction.
 Thus, the interpretation of (A.8) is that in lf{f}ji} , for each

 i & J there is some constraint in flv/{}ieJ(s*) involving ni, which

 binds. By Lemma A.1, we then know that {nj}ij E E&l-f}i.-W)
 Thus, using the induction assumption, the equilibrium is self-
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 enforcing. Since it is on the efficient frontier of self-enforcing
 equilibria, it is coalition-proof. Apply induction.

 Q.E.D.
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