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This article theoretically and empirically analyses behaviour in penny auctions, a relatively new
auction mechanism. As in the US dollars or war-of-attrition, players in penny auctions commit higher
non-refundable costs as the auction continues and only win if all other players stop bidding. I first show
that, in any equilibria that does not end immediately, players bid probabilistically such that the expected
profit from every bid is zero. Then, using two large data sets covering 166,000 auctions, I calculate that
average profit margins actually exceed 50%. To explain this deviation, I incorporate a sunk-cost fallacy
into the theoretical model to generate a set of predictions about hazard rates and player behaviour, which I
confirm empirically. While players do (slowly) learn to correct this bias and there are few obvious barriers
to competition, activity in the market is rising and concentration remains relatively high.
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1. INTRODUCTION

A penny auction is a relatively new auction mechanism run by multiple online companies. In the
simplest form of this dynamic auction, players repeatedly choose to pay a non-refundable fixed
bid cost ($0.75 in my empirical data set) to become the leader in the auction, and win a good if
no other player chooses to bid within a short period of time. Not surprisingly, theory suggests that
the auctioneer’s expected revenue should not exceed the value of the good. However, in a data set
of more than 160,000 auctions run by a company over a four-year period, I show that average
auctioneer profit margins empirically exceed 50%. In an illustrative example, my data set contains
more than 2,000 auctions for direct cash payments, in which the average revenue is 204% of the
face value of the prize. This article theoretically and empirically explores these deviations, as
well as analysing the evolution of the market for these auctions over time.

One potential explanation for high auctioneer profits comes from the US dollars (DA) (Shubik,
1971), which shares many characteristics with the penny auction. In the DA, two players
sequentially bid slowly escalating amounts to win a US dollars bill, but are both required to
pay their last bid. The DA is known as a “prototypical example” of the irrational escalation of
commitment (also known as the sunk-cost fallacy), in which players become less willing to exit a
situation as their financial and mental commitments increase, even if these commitments do not
increase the probability of success (Camerer and Weber, 1999). This suggests that the sunk-cost
effect also could be playing a role in penny auctions, as players make similarly escalating financial
commitments (in the form of bid costs) as the auction continues.
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To better understand if sunk costs are driving high auctioneer profits, I first theoretically
analyse the penny auction. Not surprisingly, there are multiple equilibria of this game, including
asymmetric equilibria in which the game ends after one bid. However, any equilibrium in which
play continues past the second period must be characterized by a unique set of aggregate hazard
rates and individual strategies from that point forward. In all of these equilibria, players bid
probabilistically such that the expected profit from every bid is zero. This equilibrium is similar
to the symmetric equilibrium of the DA (and another similar auction, the war-of-attrition WOA).
In each of these games, the players can be seen as playing a lottery every time they place a bid
in equilibrium, with the probability of winning determined endogenously by the other players’
mixed strategies.

Note that, under this interpretation, there are many reasons that we might expect players
to overbid (or bid too often), such as risk-seeking preferences or a simple joy of winning. To
understand how to differentiate these explanations from the sunk-cost fallacy, I augment the
theoretical model such that a player perceives the value to winning the good as rising in her
previously (sunk) bid costs. The core prediction of this alternative model is that bidding behaviour,
hazard rates, and auctioneer profits will start at the equilibrium level of the standard model, but
will deviate farther from the standard model as the auction continues. That is, the crucial difference
is not that players are willing to bid in this endogenous lottery, but that this willingness increases
over time as sunk costs increase. In this sense, the penny auction (and the DA) presents an ideal
place to find the sunk-cost fallacy given this constant repetition of a decision accompanied by
the slow escalation of sunk costs.

I then turn to the data, which consist of a auction-level data set of nearly 100 million bids
on 166,000 auctions and a bid-level data set of 13 million bids on 18,000 auctions from more
than 129,000 users from a large online auctioneer called Swoopo. As predicted by the theory,
the ending time of the auction is highly stochastic, with the auctioneer suffering losses on more
than one-half of the auctions. However, as previously noted, revenues are far above theoretical
predictions, generating 26 million in profits over a four-year period. To determine if sunk costs
are playing a role, I examine the difference between the empirical and theoretically predicted
hazard functions. The hazard rates suggest that auctions end with the probability slightly under
that predicted by the standard model in the early stages, but deviate farther and farther below as
the auction continues. Economically, this leads to a bidder return of only 18 to 24 cents from each
75-cent bid at later stages of the auction, which suggests that bidders are willing to accept worse
expected returns as the auction continues, which fits the predictions of the sunk-cost model.

To control for potential selection issues that may drive this result and provide a calibration of
the level of the sunk-cost effect, I regress the outcome of an auction ending at any point on a large
set of controls, the value of the good at the time of bidding, and the aggregate amount of sunk
bid costs (the total of all players’ individual sunk costs). Across all specifications, the coefficient
on log aggregate sunk costs is highly significant and is 6–11% the coefficient on log value. In
the Online Appendix B, I run a structural estimation to control for the alternative explanations of
risk-seeking and joy-of-winning preferences. The analysis similarly suggests that a US dollars
increase in aggregate sunk costs has an impact equal to 8% of a US dollars increase in value,
controlling for these alternative hypotheses (both of which are also estimated to play a statistically
significant role in behaviour). As I roughly estimate an average of sixteen active players (and
a median of thirteen players) in auctions, a back-of-the-envelope calculation assuming equal
distribution of sunk costs suggests that a player with an additional US dollars of individual sunk
costs acts as if the value of the good has been increased by just more than a US dollars.

As this estimate is potentially biased upwards due to heterogeneity across auctions, I use
the bid-level data set to control for individual heterogeneity by using individual fixed effects.
The majority of users attend multiple auctions (often involving the same item), allowing for
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the observation of changes in individual behaviour given changes in individual sunk costs over
auctions and time. I find that the probability that a player leaves an auction is highly significantly
decreased as the player’s individual sunk costs increase. Depending on the specification, the
coefficient on log individual sunk costs is between 50% and 95% the coefficient on log value.
Interestingly, sunk bid costs from other recent auctions play a very small role in players’decisions,
suggesting that players are largely focused on the sunk-costs in the current auction. Furthermore,
experience largely mediates the sunk-cost fallacy. That is, the coefficient on sunk costs falls as
an individual’s experience rises, reaching nearly zero for the players with the highest levels of
experience in my data set. This finding suggests that more experienced players might have higher
expected profits from each bid. In fact, there is a significant positive (and concave) relationship
between a user’s experience and profits, even when controlling for user fixed effects, with the
most experienced players collecting slightly positive profits in expectation.

Shifting to the larger market for these auctions, there are two main reasons to believe that large
auctioneer profits are not sustainable in the long term. On the demand side, players can learn better
strategies or avoid the auction altogether. On the supply side, as it is extremely cheap to perfectly
replicate the market leader’s auction site and auctions, many other companies will likely enter the
market. In fact, the early market leader and source of my data set, Swoopo, declared bankruptcy
in 2011. However, this event does not appear to be representative of the general trends in the
market. Using auction-level data from 2009 for five competitors and Alexa Internet visitor data
from 2008 to 2012 for 115 competitors, I show that market activity has generally increased over
time, with the total of all sites reaching 0.01% of global Internet traffic. Furthermore, I show that
the Herfindahl index of pageviews over the four-year period has remained above the Department
of Justice cut-off for “moderate concentration” and commonly rises above the cutoff for “high
concentration”. These findings suggest that profits for penny auctions are not dying, at least in
the medium term.

While the penny auction is an abstract and simple game, the basic strategic decision—
determining when to exit given escalating sunk costs and opponents facing the same decision—is
common in the real world. For example, the DAwas originally used to model escalating tensions in
bargaining between firms or nations. Similarly, the WOA, which shares the same basic structure,
has been used to model competition between firms (Fudenberg and Tirole, 1986), public good
games (Bliss and Slivinski, 1984), and political stabilizations (Alesina and Drazen, 1991), as well
as being theoretically explored extensively (Bulow and Klemperer, 1999; Krishna and Morgan,
1997). While the game has been studied in the laboratory (Horisch and Kirchkamp, 2010), there
are only a small number of empirical papers on the WOA, as it is difficult to observe a real
life situation which transparently maps to the game.1 Therefore, penny auctions provide a large
natural experiment that closely mirrors the WOA, suggesting that sunk costs can cause people’s
strategies to differ from the predictions of a rational choice model, even with high stakes and
over long periods of time.

While the sunk-cost fallacy is commonly implicated in a variety of contexts (Thaler, 1990), the
empirical evidence is relatively thin. Arkes and Blumer (1985) give unexpected price discounts
to a randomly selected group of people who are buying season theater tickets, finding that those
who pay full price attend more shows than those who receive the discount. Ho et al. (2014)
find that Singaporeans who pay more for a government license to purchase a car (the price of

1. Furthermore, most situations do not present a known bid cost and good value. Empirical studies include
Card and Olson (1995) and Kennan and Wilson (1989), which only test basic stylized facts or comparative statics of the
game. Hendricks and Porter’s (1996) paper on the delay of exploratory drilling in a public-goods environment (exploration
provides important information to other players) is an exception, comparing the empirical shape of the hazard rate function
of exploration to the predictions of a WOA-like model.
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which varies widely over time) drive the car more. However,Ashraf et al. (2010) give unexpected
price discounts to a randomly selected group of Zambians who are purchasing a chemical that
cleans drinking water and find no effect on the use of the chemical. Experiments on the sunk-cost
fallacy (Friedman et al., 2007) have also not found an effect, potentially because it is difficult to
exogenously assign a sunk cost to experimental subjects.

The results contribute to the broader understanding of behavioural industrial organization,
which studies firm reactions to behaviour biases in the marketplace (see DellaVigna, 2009 for
a survey). The article also complements a set of three concurrent papers on penny auctions.
Hinnosaar (2013) analyses the auctions theoretically, following a similar approach to this article.
The main difference between the analyses is that my model assumes that if multiple players
submit a bid at the same time, only one is counted, while Hinnosaar’s model counts these
simultaneous bids in random succession. Hinnosaar’s model leads to similar hazard rates, which
imply stochastic end times and no expected profits for the auctioneer, but more complicated
individual bidding behaviour. Importantly, the major comparative statics are largely the same
across the models. Using a subset of Swoopo’s American auction-level data, Platt et al. (2013)
demonstrate that a model that incorporates both risk-loving parameters and flexibility in the
perceived value of each good cannot be rejected by the observed auction-level ending times.
Consequently, they conclude that risk-seeking plays an important role in the auctioneer’s profits.
In the Online Appendix B, I structurally estimate the sunk-cost model while controlling for
the possibility of risk-seeking preferences. While the estimate of the sunk-cost parameter does
not change significantly with this addition, I also find that risk preferences play some role in
behaviour, supporting Platt et al.’s conclusions. Finally, Byers et al. (2010) discuss the use of
aggressive strategies and use a non-equilibrium theoretical model to show that misperceptions,
such as underpredicting the number of users, can lead to higher-than-zero auctioneer profits. This
model is difficult to test empirically, especially as it is difficult to estimate the true number of
players who are participating in a given auction at a given time. Note that the misprediction model
does make different predictions than the sunk-cost model as long as players’ misperceptions do
not change as sunk costs rise.

Multiple working papers have followed this first wave of analysis. On the demand side,
Wang and Xu (2011) use bid-level data to further explore bidder learning and exit from the
market. Goodman (2012) uses bid-level data to explore bidder reputation using aggressive bidding
strategies. Caldara (2012) uses an experiment to determine the effects of group size and timing,
finding that timing does not matter but that more participants leads to higher auctioneer profits.
On the supply side, Zheng et al. (2011) use a small field experiment to explore the effect of
restricting participation of consistent winners, finding that restrictions can increase revenue.
Ødegaard and Anderson (2014) theoretically analyse a penny auctioneer’s strategy when there is
another fixed-price sales channel.

The article is organized as follows. Section 2 presents the theoretic model of the auction
and solves for the equilibrium hazard rates. Section 3 discusses the data and provides summary
statistics. Section 4 discusses auctioneer profits, and analyses empirical hazard rates and individual
behaviour. Section 5 describes the evolution of market activity and supplier concentration over
time. Finally, Section 6 concludes.

2. AUCTION DESCRIPTION AND THEORETICAL ANALYSIS

2.1. Auction description

In the Introduction, I discuss the simplest version of the penny auction and loosely compare the
auction with the DA and the WOA. This section expands the explanation and comparison.
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There are many companies that run penny auctions, which largely follow the same rules during
the time covered by my data set.2 In the auction, multiple players bid for one item. When a player
bids, she pays a small non-refundable bid cost and becomes the leader of the auction. The leader
wins the auction when a commonly observable countdown timer hits zero. However, each bid
automatically increases the timer by a small amount, allowing the auction to continue as long as
players continue to place bids. Therefore, players win when they place a bid and no other player
places a bid in the next period. To complicate matters slightly, the winner also pays an additional
bid amount to the auctioneer, which starts at zero and rises by a small commonly known bidding
increment with every bid (the bidding increment is commonly a penny, giving rise to the name of
the auction). That is, as the auction continues, the net value of the good for the player is slowly
dropping.

To understand the main differences between this game and the DA or discrete-time dynamic
war-of-attrition WOA, consider the simplest version of the penny auction in which the bidding
increment is set to zero (so that the players only pay bid costs to the auctioneer).3,4 As with a
penny auction, players in a WOAand DAmust pay a non-refundable cost for the game to continue
and a player wins the auction when other players decide not to pay this cost. However, in a WOA,
players must pay the cost at each bidding stage and are removed if they fail to pay the cost at
any point in the auction. In the penny auction, only one player pays the bid cost in each bidding
stage and players are free to bid as long as the auction is still running. The multiplayer DA lies
between these two extremes. Players are free to bid in each period regardless of their previous
bids, but bidders who return after not bidding are required to repay the costs of the current highest
participant (as the new bid must be higher the previous highest bid). Consequently, a player who
wins the WOA or DA must have paid the auctioneer the largest amount, while this is not the case
in the penny auction.

Another important difference arises when the bidding increment is strictly positive. In this
case, the net value of the good is linearly declining as the penny auction continues. In contrast,
the net value of the good is constant over time in the WOA and DA. This addition is theoretically
troublesome as it destroys the stationarity used to solve the DA and WOA models.

The following section presents a theoretical model of the penny auction and provides
an equilibrium analysis. To make the model concise and analytically tractable, I will make
simplifying assumptions, which I will note as I proceed.

2.2. Set-up

There are n+1 players, indexed by i∈{0,1,...,n}: a non-participating auctioneer (player 0) and n
bidders. There is a single item for auction. Bidders have a common value v for the item.5 There is
a set of potentially unbounded periods, indexed by t ∈{0,1,2,3...}.6 Each period is characterized

2. As of 2013, allpennyauctions.com held the most comprehensive source of information about penny auction
sites and rules.

3. In the discrete-time WOA, each active player chooses to bid or not bid at each point in time. All players who
bid must pay a bid cost. All players that do not bid must exit the game. The last player in the game wins the auction. The
rules are less defined in the situation where all players exit in the same period, which is why the continuous-time version
of the game is often used in theoretical papers.

4. The bidding increment is $0.00 in 10% of the consumer auctions in my data set.
5. I assume that the item is worth v<v to the auctioneer. The case in which bidders have independent private

values vi ∼G for the item is discussed in the Online Appendix B. As might be expected, as the distribution of private
values approaches the degenerate case of one common value, the empirical predictions converge to that of the common
values case.

6. It is important to note that t does not represent a countdown timer or clock time. Rather, it represents a “bidding
stage”, which advances when any player makes a bid.
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by a publicly observable current leader lt ∈{0,1,2,3,...n}, with l0 =0. In each period t, bidders
simultaneously choose xi

t ∈{Bid, Not Bid}. If any of the bidders bid, one of these bids is randomly
accepted.7 In this case, the corresponding bidder becomes the leader for the next period and pays
a non-refundable cost c. If none of the players bids, the game ends at period t and the current
leader receives the object.8

In addition to the bid costs, the winner of the auction must pay a bid amount. The bid amount
starts at zero and weakly rises by the bidding increment k ∈R

+ in each period, so that the bid
amount for the good at time t is tk (note that the bid amount and time are deterministically linked).
Therefore, at the end of the game, the auctioneer’s payoff consists of the final bid amount (tk)
along with the total collected bid costs (tc).

I assume that players are risk neutral and do not discount future consumption. I assume that
c<v−k, so that there is the potential for bidding in equilibrium. To match the empirical game, I
assume that the current leader of the auction cannot place a bid.9 I often refer to the net value of
the good in period t as v−tk. I consequently refer to auctions with k >0 as (k) declining-value
auctions and auctions with k =0 as constant-value auctions.

I model the game in discrete time to capture important qualitative characteristics that cannot
be modelled in continuous time (such as the ability to bid or not bid in each individual
period regardless of past choices). However, the discreteness of the game requires an additional
technical assumption for declining-value auctions that mod(v−c,k)=0. If this condition is not
satisfied, the game unravels and there is no equilibria in which play continues past the first
period.10

For simplicity, I will focus on Markov Perfect Equilibria.11,12 Bidder i′s Markov strategy set
consists of a bidding probability for every period given that she is a non-leader {pi

0,p
i
1,p

i
2,...,p

i
t,...}

with pi
t ∈[0,1]. I will commonly make statements about the discrete hazard function, h(t,lt)≡

P[xi
t =Not Bid for all i �= lt |Reaching period t with leader lt], which is a function that maps each

state (a period and potential leader) to the probability that the game ends, conditional on the state
being reached. Note that h(0,0)=

∏
i
(1−pi

0) and h(t,lt)=
∏

i �=lt
(1−pi

t).

Finally, for expositional purposes, I define two measures of profit for the auctioneer throughout
the game. To understand these concepts, note that the bidder i at period t−1 is paying the

7. In current real life implementations of this auction, two simultaneous bids would be counted in (essentially)
random order. Modelling this extension is difficult, especially with a large number of players, as it allows the time period
to potentially “jump”. Hinnosaar (2013) theoretically analyses this change (combined with other changes to model) and
finds a multiplicity of very complicated equilibria. In the Online Appendix B, I show that the predictions of my model
become much more complicated, but remain qualitatively similar when this assumption is changed in isolation.

8. Note that, unlike the real-world implementation, there is no “timer” that counts down to the end of each bidding
round in this model. As discussed in the Online Appendix B, the addition of a timer complicates the model without
producing any substantial insights; any equilibrium in a model with a timer can be converted into an equilibrium without
a timer that has the same expected outcomes and payoffs for each player.

9. This assumption has no effect on the bidding equilibrium in Proposition 2 below, as the leader will not bid in
equilibrium even when given the option. However, the assumption does dramatically simplify the exact form of other
potential equilibria, as I discuss in the Online Appendix B.

10. I discuss this issue in detail in the Online Appendix B. While the equilibrium in Proposition 2 no longer exists
if the condition does not hold, the strategies constitute a contemporaneous ε-perfect equilibrium for an extremely small
ε (on the order of hundredths of pennies) given the observed empirical parameters.

11. AMarkov Perfect Equilibrium (Maskin and Tirole, 2001) is a refinement of subgame perfection in which players
are restricted to condition strategies only on payoff-relevant outcomes. In penny auctions, this removes seemingly odd
equilibria in which players coordinate bidding strategies depending on the identity of the current leader (i.e. player ten
bids if player one is the leader, while player nine bids if player two is the leader).

12. As I show in the OnlineAppendix B, the statements for hazard rates all hold true when non-Markovian strategies
are used.
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auctioneer a bid cost c in exchange for a probability of h(t,i) of winning the net value of the
good (v−tk) at time t. In other words, the auctioneer is selling bidder i a stochastic good with
an expected value of h(t,i)(v−tk) for a price c at time t. Therefore, I define the instantaneous
profit of the auctioneer at time t with leader lt as π (t,lt)=c−h(t,lt)(v−tk) and the instantaneous
percent markup as: μ(t,lt)= ( π (t,lt)

h(t,lt)(v−tk) )·100.

2.3. Equilibrium analysis

While there are many hazard functions and strategy sets that can occur in equilibrium, I argue
that it is appropriate to focus on a particular function and set (identified in Proposition 2) as these
must occur in any state that is reached on the equilibrium path after period 1.

To begin the analysis, Proposition 1 notes the relatively obvious fact that no player will
bid in equilibrium once the cost of a bid is greater than the net value of the good in the
following period, leading the game to end with certainty in any history when this time period is
reached.

Proposition 1. Define F = v−c
k −1 if k >0.

If k >0, then in any Markov Perfect Equilibrium, the game never continues past period F.

That is, h(t,lt)=1 if t >F.

I refer to the set of periods that satisfy this condition as the final stage of the game. Note that
there is no final stage of a constant-value auction, as the net value of the object does not fall and
therefore this condition is never satisfied. With this constraint in mind, Proposition 2 establishes
the existence of an equilibrium in which bidding occurs in each period t ≤F :

Proposition 2. There exists a Markov Perfect Equilibrium in which players’ strategies, the
hazard rate, and auctioneer profits over time are described by

(A) pt
i =

{ 1 for t =0

1− n−1
√

c
v−tk for 0< t ≤F

0 for t >F

for all i,

(B) h(t,lt)=
{ 0 t =0

c
v−tk for 0< t ≤F
1 for t >F

for all lt, and

(C) π (t,lt)={ 0 for any t for all lt .

In an equilibrium with this hazard function, players bid symmetrically such that the hazard
rate in all histories after time zero and up to period F is c

v−tk . This hazard rate at time period t
causes the expected value from bidding (and the auctioneer’s profit) in all histories at period t−1
to be zero, leading players in these histories to be indifferent between bidding and not bidding.
This allows players in t−1 to use strictly mixed behavioural strategies such that the hazard rate in
all histories in period t−1 is c

v−(t−1)k , which causes the players in period t−2 to be indifferent,
and so on. Crucially, in a declining-value auction, there is no positive deviation to players in
period F, who are indifferent given that players in period F +1 bid with zero probability, (which
they must do by Proposition 1).

Note that, in the hazard function in Proposition 2, h(0,0)=0 is an (arbitrarily) assumption.
This choice does not change any of the results in the article, but simply implies that some bidding
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always occurs in equilibrium. This is the only choice in which the auctioneer’s expected revenue
is v, which might be considered the natural outcome in a common-value auction.13

For a constant-value auction, the strategies are equivalent to those in a symmetric discrete-
time WOA when n players remain in the game. However, the hazard rate for the WOA is higher
as play only continues if more than one player bids, whereas play in a penny auction continues
if any player bids.14

Not surprisingly, there is a continuum of other equilibria in this model. In some of these
equilibria, players (correctly) believe that some player will bid with very high probability in
period 1 or 2, respectively, which leads them to strictly prefer to not bid in the previous period.15

Consequently, the auction always ends at period zero or period one. Surprisingly, Proposition 3
notes that if we ever observe bidding past period one, we must observe the hazard rates in
Proposition 2 for all periods following period one. If additionally all n players meaningfully
participate in the start of the auction (bid with some probability in the initial two periods), players
must be following the individual strategies in Proposition 2 for all periods following period one.

Proposition 3. For declining-value auctions (k >0), in any Markov Perfect Equilibrium

(A) Any observed hazard rate h(t,lt) follows Proposition 2 for t >1.
(B) Individual strategies pt

i follow Proposition 2 for t >1 if pi
0 >0 and pi

1 >0 for all i.

For constant-value auctions (k =0), these statements are true when restricting to symmetric
strategies.

To understand the intuition for statement (A) when k >0, consider some period t with 1< t ≤F
in which h(t,lt) �= c

v−tk . As a result of this hazard rate, player lt must strictly prefer either to bid or
not bid in period t−1. If she prefers not to bid, then (t,lt) will not be reached in equilibrium (and
will never be observed). Alternatively, if she prefers to bid, then it must be that h(t−1,lt−1)=0
for any lt−1 �= lt, leading all players other than i to strictly prefer to not bid in period t−2.

Therefore, player lt cannot be a non-leader in period t−1 in equilibrium, so (t,lt) will not be
observed in equilibrium. Proposition 3 can also be interpreted as an “instantaneous zero-profit”
condition on the equilibrium path. The expected hazard rate c

v−tk leads to zero expected profits.
If this condition is violated, players in t−1 or t−2 bid in a way that keeps the state off of the
equilibrium path.

Statement (B) requires the additional constraint that each player bids with some probability
when t =0 and t =1. The constraint excludes equilibria in which one player effectively leaves the
game after period zero (leading to n−1 players in the game) and in which some player is always
the leader in a specific period (allowing her strategy for that period to be off-the-equilibrium path
and therefore inconsequential). For intuition as to why strategies must be symmetric, consider

13. Furthermore, if the auctioneer values the item at less than v, then he strictly prefers that bidding occurs in period
zero, while the bidders are indifferent. If the auctioneer can select the equilibrium (or repeat the auction until some bidder
bids in period zero), he would effectively select the particular equilibrium in Proposition 2.

14. Another intuitive explanation for this difference is that, in equilibrium, the expected total costs (the bid costs
of all players) spent in each period must equal the expected total benefit (the hazard rate times the value of the good). In
the penny auction, only one player ever pays a bid cost at each period, whereas in the WOA, there is a chance that more
than one player must pay the bid cost. Therefore, the benefit (determined by the hazard rate) must be higher in the WOA.

15. There do not exist similar asymmetric equilibria in which the auction always ends in period two (or later). If
this occured, all non-leaders would strictly prefer to bid in period one. Therefore, the auction would never end in period
one. But then all bidders in period zero could never win the auction and would strictly prefer to not bid, causing the
auction to never reach period one.
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the case in which players i and j choose strategies such that pi
t �=pj

t for some t >1. Then, it must
be that the players face different hazards as the leader in period t :h(t|lt = i) �=h(t|lt = j), leading
one of these hazards to not equal c

v−tk , which leads to the issues discussed above.
Finally, note that the statements when k =0 require the additional assumption of symmetric

strategies.16 Unlike in declining-value auctions, there is a somewhat complicated non-symmetric
equilibrium in which three players alternatively cycle between bidding with relatively low
probability and certainty. While players still expect to make zero profits from each bid over
time, the hazard rate oscillates around c

v−tk between periods. I choose not to focus on this type
of equilibrium because this behaviour requires heavy coordination among players and I do not
observe these oscillations empirically. Additionally, in the majority of my auction-level data and
all of my bid-level data, k >0.

2.4. The sunk-cost fallacy

As I will show in Section 4, the predictions of zero profits from the model above are strongly
empirically violated. Therefore, in this section, I preemptively present an alternative model that
better matches the patterns in the data. In this simple alternative model, players suffer from a sunk
cost fallacy, in that they become more willing to bid as their bid costs rise, even though these
costs are sunk. This model is a simplified and modified version of the sunk-cost model introduced
in Eyster (2002), in which players desire to take present decisions (continuing to invest in a bad
project) to justify their past decisions (investing in the project initially).

To capture sunk costs in the most parsimonious and portable way, I simply assume that each
player’s perception of the value of the good rises as she spends more money on bid costs, capturing
an additional benefit from justifying her sunk investment. Specifically, a player i who has placed
si bids has sunk costs sic and perceives the value of the good as v+θsic, with θ ≥0 defined as
the sunk cost parameter. As this parameter rises, the player’s sunk costs cause her to bid with a
higher likelihood in the auction. If this parameter is zero, the model reverts to the standard model
above.

I assume that the player is naive about this sunk-cost effect, in the sense that she is unaware
that her perception of value might change in the future and that she is unaware that other players
do not necessarily share her value perception. Without the first type of naivety, players would be
aware that they will bid too much in the future and consequently require a compensating premium
to play the game initially, leading to zero profits for the auctioneer (and violating the empirical
observations). Without the second type of naivety, each player would have very complicated
higher-order beliefs, being personally unaware of her own future changes in value perception,
but being aware of other players’changing perceptions and being aware of other players’ (correct)
beliefs about her own changing perceptions. Furthermore, due to the mechanics of mixed-strategy
equilibria, each player’s (non-Markovian) bidding probability would largely be determined by
the sunk costs of other players rather than her own sunk costs.17 With this naivety assumption,
a player simply plays the game as if the value of the good matches her perceived value, which
includes a portion of her own sunk costs.18

16. There are symmetric Markov equilibria that do not lead to the same hazard rates as those in Proposition 2. For
example, consider the equilibrium in which all players always bid in odd (even) periods and never bid in even (odd)
periods. In this equilibrium, the game always ends after period zero (period one).

17. In a mixed-strategy equilibrium, each player’s probability of bidding in the following period is chosen to make
the other players indifferent between bidding in the current period. A player is still affected by her own sunk costs as she
will not bid if the current bid amount is above her own perceived value.

18. More specifically, following other examples of naivety in the literature, an equilibrium requires that each player’s
actions weakly maximizes her own payoff given the player’s (potentially mistaken) beliefs of other players’ actions. In
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The sunk costs faced by a player at a specific time t depend on the realizations of the player’s
own mixing decisions, the mixing decisions of the other players, and the realization of the leader
selection process. Define st

i as the sunk bids placed by player i at time t for a particular realization
of the game. Define −→s as the vector containing all of the player’s sunk bids and extend pt

i to be
dependent on st

i and h(t,lt) and π (t,lt) to be dependent on −→s . Given this adjustment, Proposition 4
mirrors Proposition 2:

Proposition 4. With sunk costs, there exists a Markov Perfect Equilibrium in which players’
strategies, the hazard rate, and auctioneer profits over time are described by

(A) pt
i(s

t
i)=

{ 1 for t =0
1− n−1

√
c

v−tk+θst
i c

for 0< t ≤F

0 for t >F

for all i,

(B) h(t,lt,
−→s )=

{
0 t =0∏

i �=lt
n−1
√

c
v−tk+θst

i c
for 0< t for all lt, and

(C) π (t,lt,
−→s )={ c−h(t,lt,

−→s )(v−tk) for any t for all lt .
If θ =0, (A), (B) and (C) matches those in Proposition 2.

These formulas depend on the specific distribution of sunk costs across the players in each
game. For expositional purposes, consider the simplifying assumption that st

ic= 1
n tc (that is,

sunk costs are distributed equally across players). In this case, h(t,lt,
−→s )= c

v−tk+θ 1
n tc

. While

this formula will likely not be satisfied in an individual realization of the game, it is helpful in
understanding the comparative statics of the hazard rate and to provide a rough interpretation of
the results when the individual distribution of sunk costs is unknown.

2.5. Summary of theoretical predictions

Propositions 2 and 4 predict a variety of comparative statics about the hazard rate of the auction
and bidding behaviour, both with and without a sunk-cost fallacy.

If players do not suffer from a sunk-cost fallacy, the hazard rate is c
v−tk and players bid with

probability 1− n−1
√

c
v−tk when 0< t ≤F, and the auctioneer’s profits remain constant at zero.Afew

comparative statics are of note. First, none of the parameters affect the auctioneer’s instantaneous
profits, which remain at zero throughout the auction. Secondly, for constant-value auctions (k =0),
the hazard rate and individual bidding probabilities remain constant throughout the auction. For
declining-value auctions (k >0), individuals bid less in the auction as it proceeds (and the net
value of the good is falling), leading to a higher hazard rate. This effect is strengthened as the bid
increment k rises. Thirdly, as the number of players increases, each player’s equilibrium bidding
probability drops, but the hazard rate and profits stay constant.19 Intuitively, the specific hazard
rate in Proposition 2 can be interpreted as a zero-profit condition, which must hold regardless
of the number of the players. This is useful empirically, as I cannot directly observe the number

turn, the player’s beliefs about other players’ actions must constitute an equilibrium for the game that the player perceives
she is playing.

19. In the model, the exact number of players in the auction is common knowledge. More realistically, the number of
players could be drawn from a commonly-known distribution. In this case, players will bid such that expected auctioneer
profits are still zero. However, when the specific realization of the number of players is low (high), the auctioneer will
make negative (positive) profits.
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of players in the auction-level data. Finally, as the value of the good rises, individuals bid with
higher probability and the hazard rate consequently decreases. As a result, auctions with higher
values continue longer in expectation.

The final comparative static warrants a short digression. As the empirical data consist of many
goods that take many values, the auctions are not predicted to share the same survival rates. This
divergence creates a challenge in creating a visual representation of the predicted and empirical
hazard rates. However, as I discuss in detail in the Online Appendix B, this problem can be solved
by using the concept of normalized time t̂ = t

v . The basic intuition is that, given a constant bidding
increment k, an auction with a good of value v is approximately as likely to survive past time t as an
auction with a good of value 2v surviving past time 2t, with the relationship approaching equality
as the length of periods approaches zero.20 That is, all auctions have approximately the same
survival rates in normalized time. As a result, hazard rates in normalized time are approximately
the same for these auctions, allowing auctions with different values v to be compared. Note that
the use of normalized time does not equalize survival rates across auctions with different bidding
increments k, which consequently must be grouped into different visual representations.21

When players suffer a sunk-cost fallacy, the hazard rate is
∏

i �=lt
n−1
√

c
v+θst

i c−tk
and players

bid with probability 1− n−1
√

c
v+θst

i c−tk
when 0< t ≤F, and the auctioneer’s profits are c−

h(t,lt,
−→s )(v−tk). There are a few important changes in the comparative statics from the standard

model. For the hazard rate and bidding probabilities, the effect is most easily seen for a constant-
value auction (when the hazard is

∏
i �=lt

n−1
√

c
v+θst

i c
). Rather than remaining constant over time,

the hazard rate starts at the point predicted by the standard theory, but falls farther from this
baseline as the auction continues. This occurs because individuals start with no sunk costs, but
bid with higher probability as their personal sunk costs rise from paying for past accepted bids.
This gradual deviation from the standard predictions also occurs in declining-value auctions,
although it is possible that bidding probabilities rise due to the effect of the bid amount (which
rises over time) overweighing the sunk-cost effect. This ambiguity does not occur when focusing
on instantaneous profits (or profit margins), which start at zero but rise as aggregate sunk costs rise,
regardless of the bidding increment. Finally, this effect of sunk costs is stronger as the number of
players decreases, because the sunk costs become more concentrated in fewer players.22 Although
interesting, this prediction is less empirically useful as I do not directly observe the number of
players in an auction.

Given these comparative statics, the standard model predicts that both the probability that
an individual does not place a bid and the aggregate hazard rate will either remain constant or
rise as the auction continues, while the sunk-cost model implies that these probabilities can fall.
Furthermore, the sunk-cost model predicts that deviations from the predictions of the standard
model about hazard rates will grow larger as the auction continues and individual sunk costs
rise. This prediction differentiates the hypothesis from alternative models, most transparently in
a constant-value auction. If players have a constant joy-of-winning from winning the auction,
are risk-seeking, or under-predict the number of players in the auction, they will bid with the
same probability (above that of the standard model) throughout the auction. Therefore, my main

20. For example, the probability that a constant-value auction (k =0) with bid cost c=1 and value v=100 survives
to time t =50 is (1− 1

100 )50 ≈0.605, while the corresponding probability with value v=200 is (1− 1
200 )100 ≈0.606. The

comparable survival probabilities for these auctions given k =1 are 0.495 and 0.497.

21. It is less clear how to construct a similar normalized time measure to compare auctions with different bidding
increments. Most notably, an constant-value auction (with k =0) has a non-zero survival rate at every period, while the
survival rate is always zero after the final stage of a declining-value auction (k >0).

22. Consequently, as the number of players drops, the auctioneer’s profits increase.
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empirical results involve regressing the likelihood of the auction ending (or a bidder leaving) on
the aggregate (or individual) sunk costs, testing the null hypothesis that the coefficient is zero or
positive, with an alternative hypothesis that it is negative. Although these specifications test the
reduced form predictions of the sunk-cost model in isolation, a structural estimation in the Online
Appendix B confirms the reduced form evidence supporting a sunk-cost fallacy when these other
hypotheses are taking into account.

3. DATA AND BACKGROUND

3.1. Description of Swoopo

Founded in Germany in 2005, Swoopo was the largest and longest running company that ran
penny auctions (five of Swoopo’s competitors are discussed later in the article) in 2010.23 Swoopo
auctioned consumer goods, such as televisions or appliances, as well as packages of bids for future
auctions and cash payments. As of May 2009, Swoopo was running approximately 1,500 auctions
with nearly 20,000 unique bidders each week.

The general format of auctions at Swoopo followed the description in Section 2.1: (1) players
must bid the current high bid of the object plus a set bidding increment, (2) each bid costs a
non-refundable fixed bid cost, and (3) each bid increases the duration of the auction by a small
amount. While most companies that run penny auctions solely use a bidding increment of $0.01,
Swoopo ran auctions with bidding increments of $0.15 (76% of the auctions), $0.01 (6%), and
$0.00 (18%). The cost of a bid stayed mostly constant at $0.75, E0.50, and £0.50 in the U.S,
Europe, and the U.K., respectively.24

In the majority of auctions, Swoopo allowed the use of the BidButler, an automated-bidding
system available to all users. Users could program the BidButler to bid within a specific range
of values and the BidButler would automatically place bids for the user when the timer neared
zero.25 Certain auctions, called Nailbiter Auctions (10% of all auctions, 26% of auctions in 2009),
did not allow the use of the BidButler. While the ability to use the BidButler does not obviously
change the theoretical predictions, the major regression tables additionally report results when
restricting to Nailbiter Auctions.

3.2. Description of data

I will refer to five data sets in this article, all collected using algorithms that “scraped” the
respective websites: The data for the Swoopo auctions consist of two distinct data sets, one that
contains auction-level data for all auctions and another that contains more specific bid-level data
for a subset of these auctions. To obtain an accurate estimate of the value of the good, I collected
a third data set on pricing from the Amazon website. Finally, I collected two distinct data sets
about Swoopo’s competitors for the market analysis, which will be discussed in Section 5:

23. After Germany, Swoopo spread to the U.K. (December 2007), Spain (May 2008), the U.S. (August 2008).
Nearly every auction was displayed simultaneously across all of these websites, with the current highest bid converted
into local currency.

24. A few deviations are of note. From September 2008 to December 2008, the cost of a bid in the U.S. was briefly
raised to $1.00. More significantly, Swoopo introduced a Swoopo-It-Now feature in July 2009 in which a player can use
the money spent on bid costs in an auction as credit to buy that item from Swoopo. As this rule dramatically changes the
game, all analysis in this article occurs with data captured before July 2009.

25. If two players program a BidButler to run at the same time for the same auction, all the consecutive BidButler
bids are placed immediately. Other players do observe that a player used the BidButler, but do not observe the bound set
by that player.
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TABLE 1
Descriptive statistics of auction-level and bid-level data sets

Auction-level data Number of Mean Standard Fifth Ninety-fifth
observations deviation percentile percentile

Auction characteristics
Worth up to value 166,379 382.21 509.80 35.67 1455.55
Adjusted value 166,379 342.86 477.64 23.99 1331.09
Nailbiter auction 166,379 0.095 – – –

Bidding increment
$0.00 166,379 0.176 – – –
$0.01 166,379 0.064 – – –
$0.15 166,379 0.759 – – –

Types of good
Consumer goods 166,379 0.887 – – –
Bid vouchers 166,379 0.100 – – –
Cash 166,379 0.013 – – –

Bid-level data (on subset of auctions above)

Auction characteristics
Worth up to value 18,063 334.63 423.79 34.57 1331.29
Adjusted value 18,063 282.81 374.37 19.99 1259.30
Nailbiter auction 18,063 0.29 – – –
Number unique bidders 18,063 53.53 90.01 4 218

Bid characteristics
Used BidButler 13,363,931 0.625 – – –

User characteristics
Number of bids 129,403 103.27 594.65 1 285
Number of auctions 129,403 7.47 16.37 1 23
Number of wins 129,403 0.139 1.05 0 0

Notes: The bid-level data set covers a subset of the auction-level data set. For binary characteristics, such as Used
BidButler, the mean represents the likelihood of an observation having that characteristic. Adjusted Value refers to the
price at Amazon at the time of the auction (when available).

(1) Swoopo auction-level data: the auction-level data set contains approximately 166,000
auctions for approximately 9,000 unique goods spanning from September 2005 to June 2009.
These data represent more than 108.5 million bids. For each auction, the data set contains the item
for auction, the item’s value, the type of auction, the bidding increment, the final (highest) bid, the
winning bidder, and the end time. From October 2007, the data also contain the final (highest) ten
bidders for each auction. The summary statistics, many of which have been previously referenced,
are listed in the top portion of Table 1.

(2) Swoopo individual bid-level data: the bid-level data set contains approximately 13.3
million bids placed by 129,000 unique users on 18,000 auctions, and was captured every 2–3
seconds from Swoopo’s American website from late February 2009 to early June 2009.26 Each
observation in this data set contains the (unique) username of the bidder, the bid amount, the time
of the bid, the timer level, and if the bid was placed by the BidButler.27 Note that the auctions in
this data set are a subset of the auctions in the auction-level data set. The summary statistics for
this data set are listed in the bottom portion of Table 1.

26. Due to various issues (including a change in the way that the website releases information), the capturing
algorithm did not work from 6 March to 8 March and 8 April to 11 April. Furthermore, the efficiency of the algorithm
improved on 18 March, capturing an estimated 96% of bids.

27. The algorithm captures the time and timer level when the website was accessed, not at the time of the bid. The
time and timer level can be imperfectly inferred from this information.
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(3) Amazon price data: for each good, Swoopo publishes a visible “worth up to” price, which
is essentially the manufacturer’s recommended price for the item and is commonly higher than
the easily obtainable price of the good. To create a more accurate value measure, which I call the
“adjusted value”, I use the price of the exact same item at Amazon.com and Amazon.de (and use
the “worth up to” price if Amazon does not sell the item). Sixty percent of auctions use an item
that is sold by Amazon, and the adjusted value is 79% of the “worth up to” price. The correlation
between the winning bids and the adjusted value (0.699) is much higher (Fisher p-value<0.0001)
than between the winning bids and the “worth up to” value (0.523), suggesting that the adjusted
value is a more accurate measure of perceived value.28 As I use the “adjusted price” as the estimate
for Swoopo’s procurement costs, all profits are underestimated as Swoopo’s costs might be much
less than “adjusted value” as a result of standard supplier discounts.

(4) Competitors’ auction-level data: in addition to data about Swoopo, I captured similar
auction-level data sets for five of Swoopo’s competitors: BidStick, RockyBid, GoBid, Zoozle,
and BidRay. I will refer to these data briefly when I analyse the market for these auctions.

(5) Competitors’daily website visitor data: to capture the concentration statistics of the market
over time, I collected daily website visitor data to 115 penny auction sites from Alexa Internet,
which tracks Internet usage.

4. EMPIRICAL RESULTS

The theoretical model makes a variety of clear predictions about bidder behaviour in penny
auctions. The most basic prediction is that auctioneer revenues will not exceed the easily
obtainable value of the good. In this section, I will first show that Swoopo’s revenues are, on
average, more than 150% of the value of the auctioned good. This aggregate deviation could, of
course, be driven by a variety of potential explanations.

As discussed in Section 2.5, a model of the sunk-cost fallacy makes a set of unique predictions
that differentiate it from other explanations. Essentially, the model predicts that deviations in
hazard rates, profits, and individual behaviour will become larger as aggregate and individual
sunk costs accumulate. To test these predictions, I compare the theoretically-predicted with the
empirical-observed hazard rates. Then, I examine how the auction-level hazard rate changes with
aggregate sunk costs, using a reduced-form and structural estimation. Finally, I examine how the
probability that individual players leave an auction changes as they incur larger sunk costs in that
auction.

4.1. Auctioneer profits

According to the equilibrium analysis above, one would not expect the auction format used by
Swoopo to consistently produce more revenue than the easily obtainable price of the auctioned
good. The first empirical finding of this article is that this auction format consistently produces
revenue above the market value. Averaging across goods, bidders collectively pay 51% over the
adjusted value of the good, producing a conservative average profit of $159. For the 166,000
auctions that span four years in the data set, the auctioneer’s profit for running the auction is
conservatively estimated at $26 million .29 The distribution of monetary profit and percentage
profit across all auctions is shown in Figure 1 (with the top and bottom 1% of auctions trimmed).
Perhaps surprisingly, the auctioneer’s profit is negative for a slight majority of the items. Table 2

28. More information about the value measure appears in the Online Appendix B.
29. This profit measure does not include the tendency for people to buy multi-bid packages but not use all of the

bids (“breakage”). The bid-level data suggest that this is a significant source of revenue for Swoopo.
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Figure 1

Auction profits.

Notes: Left: histogram of auction profits in US dollars. Right: histogram of auction profits as a percentage of good’s value.
Dotted lines represents zero profits. The top and bottom 1% of profit observations have been excluded for readability.

TABLE 2
Descriptive statistics of profit

Number of Average Average Average
observations adjusted value profit profit margin

All 166,379 $342.85 $159.40 50.6%

Bidding increment
$0.15 126,328 $273.93 $58.21 29.0%
$0.01 10,709 $671.55 $866.60 181.6%
$0.00 29,342 $519.65 $336.93 95.9%

Types of prizes
Consumer 147,589 $359.85 $135.38 33.1%
Bid vouchers 16,603 $181.72 $313.14 199.4%
Cash voucher 2,187 $419.27 $612.70 103.8%

Notes: “Average Profit Margin” refers to the unweighted average of profit margins and therefore does match “Average
Profit” divided by “Average Adjusted Value”.

breaks down the profits and profit percentages by the type of good and the increment level of
the auction. Notice that auctions involving cash and bid packages (items with the clearest value)
produce profit margins of more than 103% and 199%, respectively. Consumer goods, which are
potentially overvalued by the adjusted value measure, still lead to an estimated average profit
margin of 33%. Given that the other auction-types are rare and dramatically differ in profit
margins, I focus on the auctions for consumer goods for the rest of the article.30

4.2. Auction-level hazard rate

Recall from Section 2.5 that normalizing the time measure of the auctions by the value of the
goods allows the comparison of these rates across auctions for goods with different values (given

30. The quantitative results are very consistent in auctions for bid packages and cash, as shown in a previous version
of this article.
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Figure 2

Hazard rates as aggregate sunk costs rise.

Notes: Auctions are separated by bid increment. The dashed line is the theoretical prediction of the auction hazard rate
(likelihood that the auction ends at a given point conditional on reaching that point) in normalized time. The solid line is the
empirical hazard rate (with 95% confidence intervals) calculated using the method described by Klein and Moeschberger
(2003) with an Epanechnikov kernel given a ten-unit bandwidth.

that they have equal bid increments). Figure 2 displays the smoothed hazard rates over normalized
time with 95% confidence intervals along with the hazard functions predicted by the standard
model for each increment level.31 As noted in Section 2.5, the equilibrium hazard functions
for the different increments are the same at the beginning of the auction (as the bids always
start at zero), stay constant if the increment is $0.00 (as the current bid amount is always
constant), and rise more steeply through time with higher increments (as the current bid rises
faster with a higher increment). Most interesting, for auctions with bid increments of $0.00
or $0.15 (which represent 93% of the observed auctions), the hazard function is very close to
that predicted by equilibrium analysis in the beginning periods of the auction. However, for all
auctions, the deviation of the empirical hazard function below the equilibrium hazard function
increases significantly over time. This matches the predictions of the sunk-cost model. Note that
the sunk-cost model cannot explain the fact that empirical hazard rates for auctions start lower
than the predicted hazard rate (particularly when the bid increment is $0.01, which represents 7%
of the auctions).

While the hazard functions are suggestive of the global strategies of the players, it is difficult
to interpret the economic magnitude of the deviations from the predicted actions. For this, recall
the theoretical prediction that the instantaneous percent markup remains zero throughout the
auction in the standard model, but rises as the auction continues in the sunk-cost model. Figure 3
displays the markup derived from the hazard rates. For auctions with bidding increments of $0.15
and $0.00, the empirical instantaneous markup starts near this level, but rises over the course of
the auction to 200–300%. This estimate suggests that, if an auction survives sufficiently long,
players are willing to pay $0.75 (the bid cost) for a good with an expected value of $0.18–$0.24.
Therefore, rather than making a uniform profit throughout the auction, the auctioneer is making
a large amount of instantaneous profit at the end of the auction.

31. For this estimation, I used an Epanechnikov kernel and a ten-unit bandwidth, using the method described by
Klein and Moeschberger (2003). The graphs are robust to different kernel choices and change as expected with different
bandwidths.
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Figure 3

Instantaneous profits as aggregate sunk costs rise.

Notes: Auctions are separated by bid increment. The dashed line is the theoretical prediction of the instantaneous profit
margin, which is always zero. The solid line is the empirical instantaneous profit margin (with 95% confidence intervals),
calculated using the hazard rates in the previous figure.

To more formally test the alternative model of sunk costs, I run a set of regressions regarding
the probability of an auction ending at a given time, while controlling for a variety of auction
characteristics. To do this, I expand the auction-level data set into a larger anonymous bid-level
data set by determining all of the implied bids in the auction. That is, if an auction has a bid
increment of $0.01 and the winning bid amount is $1.00, there must have been 100 additional
failed bids in the auction at bid amounts $0.00, $0.01,...,$0.99. This leads to a data set of more
than 94 million bids in auctions on consumer goods, which has the same structure as the detailed
13.3 million observation bid-level data set, except that it does not contain information on the
identity of the individual bidders.

With this data set, I regress the binary variable of an auction ending after each bid time on the
log of the aggregate amount of sunk costs incurred at that point, the log of the net value of the
good at that point, and a large set of auction characteristic fixed effects (including bid-increment,
item value, time-of-day, time-of-year, etc.).32 Columns (1)–(4) of Table 3 present the results of
this regression without fixed effects, with fixed effects, limiting to nailbiter auctions, and limiting
to the time period captured in the more detailed bid-level data set. In all of the regressions,
standard errors are clustered at the item level. First, note that the coefficient on sunk costs is
highly significantly negative in each regression (p<0.0001), capturing the notion that auctions
are less likely to end as aggregate sunk costs increase. While the coefficient on the sunk costs
appears small (−0.000120 in the first specification), note that the baseline rate of auctions ending
at a given point is also very small (0.0145). A more appropriate comparison is the coefficient on
net value, which represents the change in the probability that an auction ends given log changes
in the net value of the good. For the four regressions, the coefficient on aggregate sunk costs is
6%, 7%, 8%, and 11% the coefficient on net value, respectively.

To understand the rough meaning of these ratios given the theoretical model of sunk costs,
consider the model in which sunk costs are distributed across all individuals equally. Given this
simplification, every US dollars increase in aggregate sunk costs amounts to a 1

n US dollars
increase of individual sunk costs, which leads to individuals to perceive that the value the good
has increased by 1

nθ US dollars. The ratios noted above do not precisely correspond to 1
nθ as they

32. I use a linear probability model as I will run similar regressions on the individual data and need to accomodate
a (very) large number of fixed effects.
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TABLE 3
Auction hazard rate and aggregate sunk costs

Dependent Var: 1[End] (1) (2) (3) (4)

Ln[Aggregate sunk costs] −0.000120∗∗∗ −0.000331∗∗∗ −0.000661∗∗∗ −0.000946∗∗∗
(0.000032) (0.000038) (0.00011) (0.00014)

Ln[Net value of good] −0.00190∗∗∗ −0.00452∗∗∗ −0.00862∗∗∗ −0.00857∗∗∗
(0.00011) (0.00036) (0.00099) (0.00064)

Constant 0.0145∗∗∗ – – –
(0.00096) – – –

Feb 2009–May 2009 only – – X –
Nailbiter only – – – X

Auction characteristics FEs – X X X
Observations 94,065,963 94,065,963 13,382,471 3,382,471
Adjusted R2 0.0029 0.0048 0.0088 0.0076

Notes: Standard errors in parentheses (clustered on items in all regressions). Linear regressions of the binary outcome
of an auction ending at a given point on the log of total amount of sunk costs that have been spent in that auction and
the log of the net value of the good. Columns (2)–(4) include auction characteristic fixed effects. Column (3) excludes
auctions not included in the bid-level data set. Column (4) excludes auctions which allow an automated system. Constant
not reported for regressions with fixed effects. *p<0.05, **p<0.01, ***p<0.001.

represent the relative effect of a increase in log US dollars. However, in the Online Appendix B,
I perform a more comprehensive structural estimation of 1

nθ controlling for joy-of-winning and
risk aversion effects and find a very similar estimate of 8%.

Using the more-detailed bid-level data set, I generate a rough average estimate of n=16 active
players (with a median of n=13) in an auction at each bid.33 However, even when n is known,
the aggregate estimate does not control for unobserved heterogeneity in player composition,
which can drive a selection effect that produces biased estimates. Particularly, imagine that there
are some players who always bid too much. The auctions that contain these players will have
lower hazard rates than other auctions, which will cause these auctions to be more likely to last
longer. Therefore, the estimated hazard rate at later time periods will take only these auctions
into account, consequently appearing lower than if we were to observe all auctions reaching that
point. To correct for these shortcomings, I turn to the detailed bid-level data.

4.3. Individual behaviour

The detailed bid-level data allow for the observation of each bidder’s identity, which allows for
the calculation of individual sunk costs over an auction and the ability to control for individual
heterogeneity. Unfortunately, I cannot infer an individual’s bidding probability from the data, as I
never can observe if the player would have made a bid at each stage if another player bids before
her. However, I can observe the probability that the individual exits an auction after each bid,
which I call the psuedo-hazard rate. Recall that the standard theory predicts that the probability
that a player does not bid as the game progresses should stay constant (in constant-value auctions)

33. To create this estimate, I assume that a player is an active participant in an auction for all of the time between
her first and last bid in the auction and take the average number of players active at each bid level (removing bid levels
when two or more players’ place many instantaneous bids due to the automatic BidButler). Note that the estimation could
be biased downwards (as some players might be active but have not yet placed a bid) or upwards (as some players might
not be active for all of the time between bids). This estimate is relatively sensitive to assumptions: the average including
auctions with the BidButler is twenty-two. The average number of players active at a given point in time in the auction
(rather than a given bid level) is ten.
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Figure 4

Probability player leaves an auction given sunk costs.

Notes: The line shows the local polynomial estimation of likelihood that a user leaves an auction as a function of the
number of bids placed in that auction (with 95% confidence intervals), The dashed line shows the number of estimated
users in the auction at the time of the bid to demonstrate that changes in this variable are not driving the effect.

or rise slightly (in declining-value auctions) if the number of users in the auction stays constant,
while the sunk-cost model predicts that this probability will potentially decline (as the player is
accumulating sunk costs over the course of the auction).

Figure 4 shows the local polynomial estimation of the pseudo-hazard rate (with 95%
confidence intervals), aggregated across individuals. Rather than staying constant or rising, the
pseudo-hazard rate declines significantly as the number of bids placed in the auction increases.
For example, a player who has placed only a few bids has more than a 10% chance of leaving
the auction in the next bid, whereas a player with hundreds of bids has less than a 1% chance of
leaving the auction in the next bid.34 The smoothed number of active users in the auction at the
time of the bid is also included in the figure, to demonstrate that a decline in the number of active
users is not driving the effect.

As these results are aggregated over multiple players, there is still a concern that heterogeneity
across individuals is driving the result. However, given the size of the data set, it is possible to
regress the probability of leaving an auction on the log of the individual amount of sunk costs
incurred at that point and the log of the net value of the good at that point, controlling for auction
characteristic fixed effects as well as user fixed effects. Columns (1)–(5) of Table 4 present the
results of this specification without any fixed effects, without user fixed effects, with all fixed
effects, focusing on nailbiter auctions, and with an interaction of a measure of user experience

34. Interestingly, note the spikes at twenty, thirty, fifty and 100 bids — Swoopo sells bid packages in these precise
amounts. There is a concern that the tendency for bidders to not bid at the end of a bid pack could effect the results. As
all bid pack sizes are divisible by ten, it is possible to estimate the set of these end bids for each player and control for
this effect. This has virtually no impact on the results.
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TABLE 4
Individual behavior and individual sunk costs

Dependent Var: 1[Leave] (1) (2) (3) (4) (5)

Ln[Individual sunk costs] −0.0434∗∗∗ −0.0445∗∗∗ −0.0271∗∗∗ −0.0188∗∗∗ −0.0803∗∗∗
(0.0016) (0.0017) (0.0011) (0.0017) (0.0025)

Ln[Net value of good] 0.00118 −0.0310∗∗∗ −0.0285∗∗∗ −0.0378∗∗∗ −0.0269∗∗∗
(0.0019) (0.0028) (0.0033) (0.0047) (0.0031)

Ln[Experience]*Ln[Sunk costs] – – – – 0.00702∗∗∗
– – – – (0.00012)

Constant 0.209∗∗∗ – – – –
(0.013) – – – –

February 2009–May 2009 only X X X X X
Nailbiter only – – – X –

Auction characteristics FEs – X X X X
User FE – – X X X

Observations 13,178,970 13,178,970 13,178,970 1,249,038 13,178,970
Adjusted R2 0.113 0.116 0.205 0.264 0.205

Notes: Standard errors in parentheses (double clustered on users and items in all regressions). Linear regressions of the
binary outcome of an individual player leaving an auction on the log of amount of sunk costs the individual has spent
in that auction and the log of the net value of the good. Columns (2)–(5) include auction characteristic fixed effects.
Columns (3)-(5) include individual user fixed effects. Column (4) excludes auctions which allow an automated system.
Column (5) adds an experience sunk-cost interaction effect. Ln[Experience] is also included in this regression (coefficient
= 0.0069). Constant not reported for regressions with fixed effects. *p<0.05, **p<0.01, ***p<0.001.

and the sunk costs.35 In all of the regressions, standard errors are double clustered at both the user
and item level.

In the regressions without user fixed effects, the coefficient on individual sunk costs is negative
(−0.0434 and −0.0445) and strongly significant (p<0.0001). As expected, this coefficient is
reduced when adding user fixed effects (to −0.0271), although it is still economically and
statistically significant (p<0.0001). The result implies that, as individual sunk costs double,
the probability of leaving the auction is reduced by 0.019 (=0.7×0.0271). As with the analysis
of the aggregate statistics, it is useful to compare the coefficients on individual sunk costs and
the net value. Here, the reaction of bidders to a log increase in sunk costs is nearly 95% of the
effect of a log increase in net value. When focusing on nailbiter auctions (Column (4)), in which
players cannot place bids using an automated bid proxy and must actively place each bid, this
ratio falls to 50%.

In the theoretical model, I assume that sunk costs accumulated in other auctions do not affect
bidding behaviour. However, it is conceivable that people consider all recent sunk bid costs when
making bidding decisions. To explore this possibility, I determine the (log) additional number
of sunk costs accumulated by a given player in other auctions within different time periods (0–
30, 30–60, 60–90, 90–120, 120–300, 300–720, and 720–1,440 min) of making a bid in a given
auction. I do not report the full results of this specification for space constraints. Adding these
variables into the regression in Column (3) does not meaningfully change the coefficient on sunk
costs within the auction (from −0.0271 to −0.0274). The sign on the coefficients on the other-
auction sunk-cost variables is mixed, with the highest-magnitude negative coefficient equalling

35. It is possible to directly control for the number of users in the auction using a noisy estimate, which does not
change the results. However, given the noise in this estimate and the desire for consistency with the aggregate section, I
use the same fixed effects as in the aggregate section.
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−0.0014, which is only 5% of the effect of a sunk cost accumulated within the current auction.36

This finding suggests that players are narrow bracketing, in that they largely only consider the
sunk costs within the current auction when making decisions.

Finally, the Column (5) allows the sunk-cost coefficient to vary depending on the experience
of the user at the time of the bid (experience is defined as the number of prior bids placed in
any auction and is discussed more in the Online Appendix B). This result suggests that the effect
has a large magnitude (a coefficient of −0.0803) for inexperienced bidders and reverts to zero
as experience increases, so that the players with the highest levels of experience in my data set
(30,000–60,000 bids) have a coefficient of nearly zero. Interestingly, this suggests one reason
that more experienced players may do better in these auctions. In fact, as I show in the Online
Appendix B, there is a very significant positive (concave) relationship between user experience
and user instantaneous profits, even controlling for user fixed effects. Specifically, a player with no
experience can expect to lose $0.60 per each $0.75 bid, whereas those with very high experience
levels have slightly positive expected payoffs per each bid.

While the aggregate and individual results are consistent with the predictions of the sunk-cost
model, it is important to note that the results rely on non-experimental variation of sunk costs.
This begs the question: what is driving this variation? In the theoretical model, sunk costs accrue
randomly because the equilibrium strategy involves randomization. Reality is likely closer to
the incomplete information setting in Harsanyi’s purification theorem (Harsanyi, 1973), in which
players experience small private random shocks to payoffs and only bid if the shock is above some
threshold.37 Under this view, bidders with higher values for the good (potentially arising from
accumulated sunk costs) have a lower threshold and consequently bid with higher probabilities.
There is some suggestive evidence for this interpretation. For example, bidders sometimes take
small breaks from bidding, presumably to answer the door or go to the bathroom. After these
breaks, bidders are significantly more likely to return to an auction given higher sunk costs.38

Similarly, bidders commonly switch between auctions, presumably due to lack of interest. Bidders
are less likely to switch auctions given higher sunk costs in the initial auction and, conditional
on having switched to a new auction, are more likely to return to the initial auction given higher
sunk costs.39

While this evidence on mechanisms for random assignment of sunk-costs is suggestive, it
does not fully rule out the endogeneity problem. In fact, the sunk-cost fallacy has been difficult
to identify in empirical settings precisely because it is virtually impossible to observe exogenous
assignment of sunk costs in a field setting: taking on an initial investment is inherently a choice,
and people who make initial investments are presumably more likely to make later investments.40

My field environment somewhat circumvents this issue, as I can observe the same user making
different investments for the same items in a relatively clean environment. However, if the same

36. The full set of coefficients are, respectively: 0.0006, −0.0012, −0.0009, −0.0009, −0.0014, −0.0010, −0.0015
−0.0011.

37. In this environment, shocks could come in the form of outside events (bidders need to go to the bathroom, get
back to work, walk the dog, etc.), internal events (such as a transient thought), or in the auction-related events (such as
facing a new bidder).

38. Defining a break as leaving the auction site for more than 10 minutes, the regression of the likelihood of returning
to an auction after a break on the log of individual sunk costs yields a coefficient of 0.0186*** (0.00070), controlling for
auction-characteristic and user-fixed effects.

39. The regression of the likelihood of switching to another auction (within 10 minutes) on the log of individual
sunk costs yields a coefficient of −0.0271*** (0.00057), controlling for auction-characteristic and user-fixed effects.
Given that a person does switch auctions, the same regression with the likelihood of returning to the original auction
yields a coefficient of 0.0505***(0.00074).

40. With experimental control, one could randomly “reject” bids or randomly assign a bid cost after a bid was
placed, leading to certainly exogenous variation in sunk costs.
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TABLE 5
Descriptive profit statistics of competition

Company Active since Auctions/day Profit/day Profit percentage

Swoopo 10/2005 271.77 $63,322.53 62.74%
BidStick 10/2008 38.22 $3,656.38 51.76%
GoBid 02/2009 9.12 −$110.74 7.0%
Zoozle 02/2009 6.64 $164.27 3.31%
RockyBid 03/2009 9.98 −$628.72 −11.9%
BidRay 04/2009 1.75 $127.31 62.31%

Notes: Auction and profit statistics from five major competitors as of mid-2009. Statistics calculated from October 2008
to June 2009. Companies ordered by entry date.

user experiences large changes in value perception over time for the same item (but mistakenly
continues to enter the auction when her value is low), the endogeneity problem might still exist.

5. MARKET SIZE AND COMPETITION

The previous section establishes that penny auctions are highly profitable for the auctioneer, in
part due to a naive sunk-cost fallacy. There are two reasons to believe that these profits are not
sustainable in the long run. First, on the demand side, consumers might learn to either modify
their bidding behaviour such that they do not lose money or avoid these auctions all together. The
last results of Section 4.3 note that (much) more experience does appear to mediate the sunk-cost
fallacy and that more experienced players have higher expected profits from each bid. Secondly,
on the supply side, competition might reduce each firm’s profits as there are very few obvious
barriers to entry in this market. There are no intellectual property barriers and the cost of creating
a nearly identical product is extremely cheap. In fact, there are companies that sell pre-designed
penny auction website templates that allow any potential competitor to start a similar site in a
few hours. This view is supported by the fact that, in March 2011, Swoopo’s parent company
filed for bankruptcy, shutting down the auction website. Internet forums and articles cite a variety
of sources for this event, including competitive forces, poor management, over-hiring, and a
disappearing market.

A detailed analysis provides a complex picture. First, consider the supply side. In 2009, four
years after Swoopo was founded and more than a year after entering the U.S., the market was still
highly concentrated. Table 5 displays the use and profit statistics of Swoopo and five other major
entrants to this market in 2009.41 Each company produced a very small number of auctions in
comparison to Swoopo. Furthermore, only one of the five major competitors was making large
daily profits, which were still a small percentage (6.6%) of Swoopo’s daily profits. The other four
competitors were making small or negative daily profits. Although there was a clear opportunity
for profits in this industry and it was not difficult to perfectly replicate Swoopo’s website, these
companies were not particularly successful, at least in the medium term.

By 2011, there were hundreds of competitor sites. To quantify the structure of the market at
this time, I collect visitor data on 115 penny auction websites that were active at some point from
2008 to 2012. The site list comes from two sources. I use the set of 97 sites that were tracked at
some point in time by the largest penny auction tracking service, Allpennyauctions.com. I append
18 sites that operated prior to the tracking service, such as those in Table 5. For each of these
sites, I collect visitor data (the daily unique pageviews per million views) from Alexa Internet,

41. Based on cursory research, these five companies were the top five competitors to Swoopo as of June 2009.
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Figure 5

Concentration and demand over time.

Notes: Solid line shows the total pageviews/million views of 115 penny auction websites (statistics from Alexa Internet)
from 2008–2012, where 100 represents 0.01 of total global Internet traffic. The dashed line shows the Herfindahl index
calculated using the same individual pageview metric for the 115 firms.

a company that tracks visitors to websites.42 I then construct a monthly concentration index using
the visitor data by creating a Herfindahl index over the average pageviews. The results are shown
with the dotted line in Figure 5, which also highlights the point of Swoopo’s exit.

In early 2008, when penny auctions are introduced to the U.S., there is an extremely high level
of concentration (Swoopo was essentially a monopoly). As more competitors enter the market,
the level of concentration is reduced. However, the Herfindahl index stays firmly above 0.15 (the
Department of Justice cutoff for “moderate concentration”) and often rises above 0.25 (the cutoff
for “high concentration”). After Swoopo exits, concentration stays above 0.2 and rises as high as
0.4, with a new site (quibids.com) receiving around one-half of all penny auction traffic over this
time.

Figure 5 also plots the total daily number of pageviews per million pageviews for all sites,
a metric of activity for the entire market: a level of 100 suggests that the total pageviews of all
penny auctions sites accounted for an average of 0.01% of global Internet traffic in that month.
Although the growth is not monotonic (including a sharp drop following Swoopo’s exit), the
number of visitors is generally rising, reaching nearly 0.01% of Internet traffic. This growth is
also reflected in the auction and profit statistics. At the peak of my data set in 2009, Swoopo
was running nearly 2,000 auctions a week with an estimated profit of around $250,000 from
selling $425,000 worth of goods. For comparison, the current market leader (quibids.com) in
2012 runs nearly 17,000 auctions a week with an estimated profit of $550,000 from selling nearly

42. One might prefer another measure of usage, such as the number of auctions on the website. Unfortunately,
historical data for this statistic is not available. However, auction data from November 2012 was available for fifty-two
sites fromAllpennyauctions.com. In November 2012, my measure of use, the combined number of daily unique pageviews
per million users, is highly correlated (0.987) with the number of auctions for these sites.
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$1,250,000 worth of goods. These statistics suggest that, in fact, it does not appear that activity
is falling or competition is lowering profits in the medium term.

The fact that concentration remains high in the face of apparently increasing demand implies
that there is a significant barrier to competition in this market. However, as discussed above, it is
possible to replicate the market leader’s technology with very few upfront costs. Furthermore, as
bidders would presumably prefer to compete with fewer other bidders (there is a negative network
externality), entrants could be potentially favoured over an established firm. Finally, while there
are presumably search costs and switching costs, these appear relatively small as there are well-
known aggregator sites that list all penny auction sites (including reviews and profit statistics)
and joining a new site takes a few minutes.

In informal discussions, small penny auction-site owners point to a different structural
barrier.43 From their perspective, users choose penny auction sites based on the number of active
auctions at any given time. While it is technically easy for another company to perfectly match
the market leader’s supply of auctions at every point in time, the auctions will continually end
quickly without a large user base, leading to large immediate losses. If these temporary losses are
high enough, companies are forced to grow slowly. The Alexa user data suggest relatively slow
movements of shifting market power, which provides indirect evidence in support of this view.
For example, it took nearly two years for quibids.com to overtake Swoopo in site rankings.

6. DISCUSSION AND CONCLUSION

The penny auction is a relatively new auction format, which is similar to the DA or dynamic
WOA. The auction provides an ideal field environment to test for the existence of the sunk-cost
fallacy, as it is a simple real-stakes strategic game in which players continuously make a simple
binary decision as they slowly commit measurable, non-recoverable, and escalating monetary
amounts to win a retail good with a well-known value. Furthermore, because the game is played
by the same players many times, it is possible to observe the same individual’s behaviour given
different levels of individual sunk costs, which vary naturally throughout the auction.Atheoretical
analysis suggests that a player who exhibits the sunk-cost fallacy will become less willing to leave
the auction as sunk costs accumulate, even though these past expenditures do not improve the
player’s chances of winning. This prediction is confirmed in the empirical analysis of aggregate
and individual behaviour, a conclusion that is robust to a variety of specifications, including
controlling for other potential explanations.

As a result of bidder behaviour, auctioneer profit margins from the original penny auction
site empirically exceeded 50% across more than 166,000 auctions. This level of profits has led
commentators to question the virtue of the auction format, suggesting that it is designed entirely
to exploit players with behavioural biases (Thaler, 2009; Stone, 2009). Given this view, one
might expect players to learn either not to play the auction or not to be affected by sunk costs,
eliminating auctioneer profits in the long run. While there is evidence of learning in my data set,
auctioneer profits and traffic to other penny auction sites remains high nearly ten years after the
introduction of the format, likely due to the ability to attract a constant stream of inexperienced
new bidders on the Internet. Therefore, it appears that this business model is oddly robust in the
medium term.

Under the interpretation that the auction is taking advantage of consumers, some have
suggested the need for state regulation of penny auctions (King, 2012). This debate points

43. I briefly talked to six penny auction site owners by phone in 2009–2010. This is a non-representative and
contaminated sample as all instigated conversations with me after a version of this article was circulated.
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to a deeper issue in behavioural industrial organization: Should regulation exist to “protect”
consumers from their own behavioural biases? In the case of penny auctions, critics have pointed
to the similarity between the auction and a lottery, which governments commonly regulate for
moral, paternalistic, or revenue generating reasons (Clotfelter and Cook, 1990). While there are
similarities with a lottery (large numbers of participants losing relatively little and one participant
winning a significant prize with small probability), there are also important differences (no
exogenous source of randomness and skill playing a role in the expected outcome). Consequently,
this issue of regulation is largely unresolved, although the debate continues given the introduction
of other similar lottery-like auctions, such as Price Reveal Auctions (Gallice, 2012) and Unique
Price Auctions (Rapoport et al., 2007; Raviv and Virag, 2009).

A. APPENDIX

A.1. Proof of Main Results

The results for hazard rates hold for non-Markovian strategies (in which players condition on the leader history) with
leader history Ht replacing (t,lt) and some notational changes.

Proposition 1.

Proof Assume that an equilibrium exists in which h(t∗,l∗t )<1 for some history (t∗,l∗t ) where t∗ > v−c
k −1. Then,

there must be some player i �= l∗t with pi
t >0. Given some (t,lt), define the probability that player i has a

bid accepted at (t,lt) as ai(t,lt)∈[0,1] and the probability that the game ends at (t,lt) as q(t,lt)∈[0,1]. Note
that as pi

t >0, it must be that ai(t∗,l∗t )>0. Player i′s continuation payoff in the proper subgame starting at

(t∗,l∗t ) is then: E[
∑∞

t=t∗
ai(t,lt)(−c+qt+1(t+1,i)(v−(t+1)k))]<E[

∑∞
t=t∗

ai(t,lt)(−c+qt+1(t,i)(v−( v−c
k +1)k))]<

E[
∑∞

t=t∗
ai(t,lt)(−c+qt+1(t+1,i)(c−k))<0. But, player i could deviate to setting pi

t =0 and receive a payoff of 0.

Therefore, this can not be an equilibrium. ‖
Proposition 2.

Proof Note that the hazard function associated with the strategies matches those in the Proposition: for t =0, h(t,lt)=0;
for 0< t ≤F, h(t,lt)= (1−(1− n−1

√
c

v−tk ))n−1 = c
v−tk ; for t >F, h(t,lt)=1.

Claim: this set of strategies is a Markov Perfect Equilibrium.
First, consider if k >0. Note that the game is non-stationary. I will show that, for any (t,lt), the following statement

(referred to as statement 1) is true: there is no strictly profitable deviation from the listed strategies at (t,lt) and the
continuation payoff from entering (t,lt) as a non-leader is 0. For the subgames starting at (t,lt) with t >F, refer to the
proof of Proposition 1 for a proof of the statement. For the subgames starting at (t,lt) with t ≤F, the proof continues
using (backward) induction with the statement already proved for any (t,lt) with t > F. At (t,lt), non-leader player i will
receive an expected continuation payoff of 0 from not betting (she will receive 0 at (t,lt) and will enter some (t+1,lt+1)
as a non-leader, which has a continuation payoff of 0 by induction). By betting, there is some positive probability
her bid is accepted. If this is the case, she receives −c at (t,lt), and will enter (t+1,i) as the leader. The probability
that she wins the auction at (t+1,i) is h(t+1,i)= c

v−(t+1)k , in which case she will receive v−(t+1)k. The probability
that she loses the auction at (t+1,i) is 1− c

v−tk , in which case she will enter (t+2,lt+2) as a non-leader, which must
have a continuation payoff of 0 by induction. This leads to a total continuation payoff from her bid being accepted of
−c+ c

v−(t+1)k (v−(t+1)k)=0.Alternatively, if the bid is not accepted, she enters (t+1,lt+1) as a non-leader and receives
a continuation payoff of 0 by induction. Therefore, the continuation payoff from betting must be 0. Therefore, statement
1 is true for all periods and this is a Markov-Perfect Equilibrium.

Secondly, consider if k =0.44 First, note that, given the strategies listed in the Proposition, the continuation payoff
for every player of entering a period t as the leader is πL(t)=c and a non-leader is πNL(t)=0, which we refer to as πL

44. The author wishes to thank an anonymous referee who pointed out a hole in the previous proof for the k =0
case. The previous proof checked for one-step deviations, but this is not sufficient as the game does not satisfy continuity
at infinity. The current proof for the k =0 is a modified version of Lemma B.3 in Hinnosaar (2013).
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and πNL as they are independent of time. Consider the (potentially non-equilibrium) strategy that leads to the highest
payoff for player i. Suppose this provides a higher expected payoff for player i than the equilibrium strategy. Then, the
strategy must involve bidding at some point as never bidding leads to a payoff of 0. Consider a period t in which player
i bids with positive probability and define the continuation payoff for player i given this strategy as π∗

L (t) if the player
is the leader and π∗

NL(t) if the player is not the leader. Define the probability of bidding at period t for this strategy
as p>0. Define the probability of player i’s bid counting at period t given she makes a bid and given other players’
equilibrium strategies as q. Then, π∗

NL(t) can be written as p(q(π∗
L (t+1)−c)+(1−q)π∗

NL(t+1))+(1−p)π∗
NL(t+1). We

will now show that (1) π∗
NL(t+1)=π∗

NL(t) and (2) π∗
L (t+1)=c+(1− c

v )π∗
NL(t). Consider (1). Note that all players other

than i play the same strategy regardless of the history. Therefore, (i) π∗
NL(t+1)≮π∗

NL(t) because player i could just
change her strategy from period t+1 and onward to match that of period t and onward (achieve a higher payoff at
time t) and (ii) π∗

NL(t+1)≯π∗
NL(t) because player i could just change her strategy from period t and onward to match

that of period t+1 and onward, (contradicting the supposition that her the strategy at time t led to the highest payoff).
Therefore, (1) is true. Now, consider π∗

L (t+1). Given the other players’ strategies, with probablity c
v , no other player

will bid, so that player i will win the auction and receive v, while with probability 1− c
v , some player will bid and

player i will enter period t+2 and have π∗
NL(t+2), which is equal to π∗

NL(t+1) and therefore π∗
NL(t), by the same logic

as (1). Therefore, (2) is true. Given (1) and (2), π∗
NL(t)=p(q(π∗

L (t+1)−c)+(1−q)π∗
NL(t+1))+(1−p)π∗

NL(t+1) can
be rewritten as π∗

NL(t)=p(q(c+(1− c
v )π∗

NL(t)−c)+(1−q)π∗
NL(t))+(1−p)π∗

NL(t)=π∗
NL(t)− c

v pqπ∗
NL(t). As c>0, v>0,

and p>0, this can only be true if π∗
NL(t)=0, which is a contradiction. ‖

Proposition 3.

Proof First, consider if k >0.

Consider statement (1). I will show that, for each period t, (A) for any (t,lt) that is reached in equilibrium, h(t,lt)
must match those in Proposition 2 if t >1 and (B) the continuation payoff from any player i �= lt−1 entering any (t−1,lt−1)
that is reached in equilibrium, πi(t−1,lt−1), must be zero. By Proposition 1, the statement (A) is true for all (t,lt) where
t > v−c

k −1=F. Now, consider statement (B). As h(t,lt)=1 for every period t >F, it must be that pi =0 for each player
i �= lt for every period t >F. Then, it must be that πi(t,lt)=0 if t >F for all players i �= lt as no player bids for any t >F.

Finally, consider πi(F,lF ) for any player i �= lF . There are three possible outcomes for player i �= lF at (F,lF ), all of which
lead to a continuation payoff of 0. First, the game ends. Secondly, another player enters period F +1 as the leader, where
player i’s continuation payoff is πi(F +1,lF+1) where i �= lF+1, which must be 0 by the above proof. Third, player i enters
period F +1 as the leader, in which case her payoff must be −c+h(F +1,i)(v−Fk)+(1−h(F +1,i))πi(F +2,lF+2)=
−c+v−( v−c

k )k =0 as h(t,lt)=1 for any (t,lt) if t >F by Proposition 1. Therefore, πi(F,lF )=0 for i �= lF and statement
(B) is proven if t >F.

For 1< t ≤F, the proof continues using (backward) induction with the statement already proved for all periods t
with t > F. First consider statement (A). Taking the other players’ strategies as fixed, define the probability of each player
i∈{1,2,..n} being chosen as the leader in t+1 at (t,lt) as qj=B

i (t,lt) if player j bids and qj=NB
i (t,lt) if player j does not

bid. Note that qi=B
i (t,lt) must be strictly positive. For part (1) of the statement, consider some (t∗,l∗t ) which is reached in

equilibrium in which h(t∗,l∗t ) �= c
v−tk . Consider any (t∗ −1,l∗t−1) that proceeds (t∗,l∗t ) and any (t∗ −2,l∗t−2) that proceeds

(t∗ −1,l∗t−1). Note that l∗t �= l∗t−1 and l∗t−1 �= l∗t−2. The expected difference in continuation payoff from player l∗t in period
t−1 for history (t∗ −1,l∗t−1) from bidding and not bidding is:

q
l∗t =B
l∗t

(t∗ −1,l∗t−1)(−c+h(t∗,l∗t )(v−tk))+(1−q
l∗t =B
l∗t

(t∗ −1,l∗t−1))
∑

j �=l∗t
q

l∗t =B
j (t∗ −1,l∗t−1)∗πl∗t (t,j)−∑

j �=l∗t
q

l∗t =NB
j (t∗ −1,l∗t−1)∗πl∗t (t,j). By induction, πl∗t (t,j)=0 for any j �= l∗t . Therefore, the above equation

simplifies to q
l∗t =B
l∗t

(t∗ −1,l∗t−1)(−c+h(t∗,l∗t )(v−tk)). Now, consider the situation in which h(t∗,l∗t )< c
v−tk . In this case,

the difference in continuation payoff is negative, and therefore player l∗t must strictly prefer to not bid at any (t∗ −1,l∗t−1)
that proceeds (t∗,l∗t ). But then (t∗,l∗t ) will not be reached in equilibrium and we have a contradiction. Next, consider the
situation in which h(t∗,l∗t )> c

v−tk . In this case, the difference in continuation payoff is positive, and therefore player
l∗t must strictly prefer to bid in period t−1 at any (t∗ −1,l∗t−1) that proceeds (t∗,l∗t ). This implies that h(t∗,l∗t )=0 in
equilibrium. However, now consider l∗t−1 in period t−2 in any (t∗ −2,l∗t−2) that proceeds (t∗ −1,l∗t−1). Claim: in each
potential state of the world at (t∗ −2,l∗t−2) (the other players’ bids and the auctioneer’s choice of leader are unknown),
player l∗t−1 weakly prefers to not bid and, in at least one state of the world, l∗t−1 strictly prefers to not bid. First, consider
the states of the world in which no other player is bidding. Here, a bid from player l∗t−1 leads to an expected continuation
payoff of −c+h(t∗ −1,l∗t−1)(v−(t−1)k)+(1−h(t∗ −1,l∗t−1))πl∗t−1

(t,lt)=−c as h(t∗ −1,l∗t−1)=0 in equilibrium and
πl∗t−1

(t,lt)=0 by induction. The expected continuation payoff from not bidding in these states of the world is 0, as
the game ends. Therefore, in these states, player l∗t−1 strictly prefers to not bid. Secondly, consider the states of world
in which another player bids and player l∗t−1’s bid will be accepted. Here, the expected continuation payoff from
bidding is −c (as above) and the expected continuation payoff from not bidding is πl∗t−1

(t−1,lt−1) for some lt−1 �= l∗t−1.

πl∗t−1
(t−1,lt−1) much be weakly greater than 0, as a player could guarantee an expected payoff of 0 from never bidding.
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Therefore, in these states, player l∗t−1 strictly prefers to not bid. Note that one state from these first two categories of
states must occur, so player l∗t−1 strictly prefers to not bid in at least one state. Finally, consider the states of the world in
which another player bids and player l∗t−1’s bid will not be accepted. Here, (t,lt−1) is constant if player l∗t−1 bids or not,
and therefore player l∗t−2 weakly prefers to not bid. Therefore, in equilibrium, player l∗t−1 must not bid at any (t∗ −2,l∗t−2)
that proceeds any (t∗ −1,l∗t−1) that proceeds any (t∗,l∗t ). But, then we have a contradiction as (t∗,l∗t ) cannot occur in
equilibrium.

Next, I will prove statement (B) for period t. Consider πi(t−1,lt−1) for any player i �= lt−1 in any (t−1,lt−1) that is
reached in equilibrium. There are three possible outcomes for player i at (t−1,lt−1), all of which lead to a continuation
payoff of 0. First, the game ends. Secondly, another player enters period t as the leader, in which case player i’s continuation
payoff is πi(t,lt) for some lt �= i, which must be 0 by induction. Third, player i enters period t as the leader, in which
case her payoff must be −c+h(t,i)(v−tk)+(1−h(t,i))πi(t+1,lt+1)=−c+ c

v−tk (v−tk)+(1− c
v−tk )πi(t+1,lt+1)=0 as

h(t,i)= c
v−tk for period t by above and lt+1 �= i, so πi(t+1,lt+1)=0 by induction. Therefore, it must be that πi(t−1,lt−1)

for any player i �= lt−1 in any (t−1,lt−1) that is reached in equilibrium and the statement is proved.

Consider Statement (2):
Assume there is an equilibrium in which player i uses Markov Strategies and pi

0 >0, pi
1 >0 for all i.

For each period t >1, I will prove that player i must follow the strategies listed in the Proposition 2. First, note that
by Proposition 1, h(t,lt)=1 where t > v−c

k −1=F, so it must be that pi
t =0 for each player i for every period t >F. For

periods 1< t ≤F, the proof is by induction with period 2 as the initial period. Period 2: As pi
0 >0, pi

1 >0 for all i, it must

be true that for each player i, (2,l2 = i) occurs on the equilibrium path. Suppose that pi
t �=pj

t for some players i and j for

t =2. Then, h(t,lt = i)=
∏n

k=1
(1−pk

t )

(1−pi
t )

�=
∏n

k=1
(1−pk

t )

(1−pj
t )

=h(t,lt = j) for t =2. But, by Statement (1) of Proposition 3, it must

be that h(t,lt = i)= c
v−2k =h(t,lt = j) for t =2 so we have a contradiction. Therefore, pi

t =pj
t for all i and j and therefore

pi
t = n−1

√
1− c

v−tk for all i when t =2. Period t: Suppose the statement is true for periods prior to t. Then, it must be true

that for each player i, (t,lt = i) occurs on the equilibrium path. Now, follow the rest of the proof for t =2 for any t ≤F
to show that the statement holds for any period 1< t ≤F. Therefore, in any Markov Perfect Equilibrium in which play
continues past period 1,strategies must match these after period 1.

Secondly, consider if k =0.

Consider Statement (1):

Assume that players use symmetric strategies: pi
t =pj

t =pt . Note that this implies that h(t,lt = i)=h(t,lt = j)=h(t).
Define the continuation payoff for every player of entering period t as the leader as πL(t) and a non-leader as πNL(t).
Claim: πNL(t)=πL(t)−c for any period t >1 that appears on the equilibrium path. First, suppose that there exists t
on the equilibrium path such that πNL(t)>πL(t)−c. Using notation from the Proof to Proposition 3, the difference
in the expected payoff from bidding and not bidding for player i at period t−1 is (1−qi=B

i (t−1))πNL(t)+qi=B
i (t−

1)(−c+πL(t))−πNL(t)<0. Therefore, all non-leading bidders must strictly prefer to not bid in period t−1. However,
this implies that t cannot be reached on the equilibrium path, a contradiction. Secondly, suppose that there exists t on the
equilibrium path such that πNL(t)< πL(t)−c. The difference in the expected payoff from bidding and not bidding for
player i at period t−1 is (1−qi=B

i (t−1))πNL(t)+qi=B
i (t−1)(−c+πL(t))−πNL(t)>0. Therefore, all non-leading bidders

must strictly prefer to bid in period t−1. This implies that πL(t−1)=πNL(t) as a leader in period t−1 will necessarily
become a non-leader in period t. It also implies that πNL(t−1)≥πNL(t) as a non-leader in period t−1 could not bid and
guarantee πNL(t). Therefore, the difference in the expected payoff from bidding and not bidding for player i at period
t−2 i

(1−qi=B
i (t−2))πNL(t−1)+qi=B

i (t−1)(−c+πL(t−1))−πNL(t−1)=
(1−qi=B

i (t−2))πNL(t−1)+qi=B
i (t−1)(−c+πNL(t))−πNL(t−1)<

(1−qi=B
i (t−2))πNL(t)+qi=B

i (t−1)(−c+πNL(t))−πNL(t)=
qi=B

i (t−1)(−c)<0

Therefore, players in t−2 must strictly prefer to not bid. This implies that period t is not on the equilibrium path,
a contradiction. Therefore, it must be that πNL(t)=πL(t)−c for any period t >1 that appears on the equilibrium path.

Now, note in equilibrium πL(t)=H(t)v+(1−H(t))πNL(t+1) and πNL(t)=H(t)(0)+(1−H(t))( 1
n (−c+πL(t+1))+

n−2
n−1 πNL(t+1)). Suppose t >1 and t is on the equilibrium path. Note that t+1 must also be on the equilibrium path: If H(t)=
1, then πL(t)=v> πNL(t)+c, a contradiction. Therefore, it must be that πL(t)=πNL(t)+c and πL(t+1)=πNL(t+1)+c.
Imposing this on the equations for πNL(t) and πL(t) yields the unique solution: H(t)= c

v . Therefore, the Proposition is
true.

Consider Statement (2):

Assume there is an equilibrium in which players uses Symmetric Markov Strategies and p0 >0, p1 >0.
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For each period t >1, I will prove that players must follow the strategies listed in the Proposition 2. The proof is by
induction with period 2 as the initial period. Period 2:As p0 >0, p1 >0, it must be true that period t occurs on the equilibrium

path. By Statement (1) of Proposition 3, it must be that h(t,lt)= c
v and therefore pt = n−1

√
1− c

v−tk when t =2. Period t: Sup-

pose the statement is true for periods prior to t. Then, it must be true that period t occurs on the equilibrium path. Now, follow
the rest of the proof for t =2 for any t to show that the statement holds for any period 1< t. Therefore, in any Symmetric
Markov Perfect Equilibrium in which play continues past period 1,strategies must match these after period 1. ‖
Proposition 4.

Proof The proof is a transparent corollary of Proposition 2, by just considering the value of the good to be equal to
ṽ=v+θsic. By the naivety assumption, each player perceives that they are playing the equilibrium in Proposition 2 with
value ṽ, leading to the hazard rates, individual strategies, and profit statistics listed. ‖
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