
Equilibrium with Monotone Actions

Kyle Woodward∗

September 2019

Abstract

I show that pure-strategy equilibria exist in a class of discontinuous games with private

information. In my primary model actions are monotone functions on a compact and convex

domain and range, and I provide conditions under which equilibria in discretizations of the

primary model converge to an equilibrium in the primary model. The proof approach implies

that if observable outcomes and utility are similarly continuous, they will be approximately

equal in the primary model and its discretizations. I apply these results to divisible-good

auctions with private information, and simultaneously prove the existence of pure strategy

equilibria in discriminatory, uniform price, and hybrid formats. Outcome approximation implies

that observed allocations and revenue in multi-unit auctions may be close to the theoretical

predictions of divisible-good models.
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1 Introduction

This paper considers equilibrium existence in games with private information and discontinuous

payoffs, when players’ actions are monotone functions. In Bayesian games with private informa-

tion, equilibrium existence can be guaranteed in settings with continuous payoffs (Athey (2001),

McAdams (2003), and Reny (2011), among others), but when payoffs are potentially discontinuous

in action these results do not apply. In discontinuous games, equilibrium existence is frequently

established by analysis of discretizations of the model in question: when action spaces are discrete,

utility is trivially continuous and equilibrium existence can be verified. Equilibrium in the dis-

cretized model is then taken to the limit as the discretization becomes fine, and best responses are

verified (Simon (1987), Reny and Zamir (2004), Bagh (2010), and Kastl (2012), among others).

I provide a set of conditions which formalize and unify this approach, and show that equilibrium

exists in divisible-good auctions with private information.

This article’s focus is on games in which actions are monotone functions. This structure is

motivated by the study of divisible-good and multi-unit auction formats, in which actions are de-

creasing bid curves, but monotone actions are applicable to a wide variety of economic settings:

any game with finite actions can be represented as a game in which actions are monotone functions,

and cumulative distribution functions are also monotone.1,2 Selection results from mathematical

analysis state that a sequence of monotone functions has an almost-everywhere convergent sub-

sequence. Then if a monotone-strategy equilibrium exists in discretizations of a game there is a

natural candidate for an equilibrium of the game itself.3 The process of constructing equilibrium in

the primary model as a limit of its discretizations suggests that, when a continuum-action model is

used as an approximation of a discrete real-world game, theoretical predictions should approximate

their empirical counterparts.

This approach to equilibrium existence necessitates two kinds of assumptions: assumptions on

discontinuities in agents’ payoffs, and assumptions on behavior in discretizations of the game in

question. Restrictions on the nature of payoff discontinuities enable analysis of best responses at

1For simplicity in the main analysis I assume that actions are monotone increasing, but this is not essential.
Actions may even be nonmonotone, provided the set of local extrema is exogenous.

2Establishing the existence of a pure strategy Bayesian Nash equilibrium where actions are distribution functions
is equivalent to establishing the existence of a mixed-strategy Bayesian Nash equilibrium.

3Monotonicity in this context occurs over two domains. Actions are monotone functions on the m-dimensional
reals. Strategies are monotone functions from the type space to the action space.
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a limiting strategy profile. Each of these restrictions has an intuitive interpretation in classical

auction models. First, utility cannot be discretely reduced by a small increase in action. In many

cases of interest this condition is facially violated: for example, a bidder in a single-unit auction

would prefer not to win an item than to win and pay a price above her value. I therefore allow

for type-dependent action spaces and provide conditions under which these constraints may be

ignored. Second, an agent who obtains a discontinuous gain at a limit of opponent strategies

could choose a different action and obtain nearly this gain near the limit. Payoff discontinuities in

auctions typically relate to tiebreaking, and a small increase in bid can obviate the tie in a bidder’s

favor. Third, if an agent incurs a discontinuous loss at a limit of strategy profiles she must have

an opponent who faces a gain at the same limit.4 In private-value auctions one bidder’s loss is

generally another’s gain.

I place restrictions on behavior in discretized models to ensure that the “limit of equilibria” is a

meaningful concept. I assume that there is a sequence of discretizations, such that any action in the

primary model may be arbitrarily approximated, where each discretization admits a monotone pure

strategy equilibrium. As mentioned above, when actions are discrete utility is vacuously continuous

in action, and equilibrium existence may be taken from the literature (Athey, 2001; McAdams, 2003;

Reny, 2011). Because this paper’s focus is on games with continuum actions, I take no stance on

the assumptions necessary for the existence of a monotone pure-strategy equilibrium in a discrete

game with private information.

Taken together, these assumptions ensure that a limit of discrete equilibria exists, and that

agent utility is reasonably well-behaved at one such limit. At the limit of equilibrium strategies

in the discretized models, no agent has a strategy that discontinuously improves on her limiting

strategy. If she did, a nearby strategy could offer nearly as much utility, and could be approximated

in a sufficiently-fine discretization. This would violate the construction of limiting strategies from

a sequence of equilibrium strategies in discretized models. Furthermore, no agent’s utility discon-

tinuously falls at the limit of her equilibrium strategies in the discretized models. Some opponent

would occasionally see a discontinuous improvement in ex post utility, which is ruled out in the

same way as an improvement in interim utility.

4This requirement is conceptually similar to reciprocal upper semicontinuity (Simon, 1987), biut the precise
definition is weaker.
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Under these conditions utility converges with equilibrium strategies, and since no other strategy

can offer a discrete improvement the limiting strategy profile is itself an equilibrium. Because many

outcomes of interest are directly tied to utility, this implies that outcomes are also converging. For

example, seller revenue comes from bidder payments. Then since bidder utility in equilibrium

of the discretized models converges to bidder utility in equilibrium of the primary model, seller

revenue is also converging. It is immediate that equilibrium in the primary model can approximate

equilibrium in the discretized models, and vice versa.

I apply these results to divisible-good auctions, establishing the existence of monotone pure-

strategy equilibria and probabilistic approximation of auction outcomes. While it is known that

common multi-unit auction formats admit pure-strategy Bayesian Nash equilibria (McAdams, 2003;

Reny, 2011), general models are viewed as intractible (Hortaçsu and Kastl, 2012) suggesting that

a divisible-good approximation might yield fruitful results. In the presence of private information,

equilibrium existence in divisible-good auctions has gone largely unaddressed: when goods are di-

visible, results which assume finite action spaces do not directly apply, and the payoff discontinuities

inherent to auctions impede application of results which assume utility is continuous. Equilibrium

existence in divisible-good auctions with private information is a novel contribution of this paper.

I also show that, in multi-unit auctions, the distributions of quantity allocations and seller revenue

are converging to their distributions in the divisible-good model. Since empirical investigations of

auctions frequently address questions of efficiency and revenue, these results provide justification

for application of the divisible-good model.

Generally, the results in this paper attempt to unify the approach taken toward equilibrium

existence in continuum-action models. In these models it is often difficult to directly prove equilib-

rium existence, so equilibrium is established in nearby models and then a limit is taken (see Jackson

et al. (2002), Reny (2011), among others). Viewed from this angle the results in this paper provide

a set of conditions under which such methods are valid. The conditions for equilibrium existence

presented in this article are similar to those found in the literature on equilibrium existence, but,

in line with the proof of equilibrium existence, they place particular emphasis on behavior relative

to sequences of strategies.

4



1.1 Related literature

This paper follows neatly from two threads of equilibrium existence literature. The first estab-

lishes (potentially mixed-strategy) equilibrium existence in models with discontinuous payoffs (as

in Reny (1999)), and the second looks at the same question in models with private information

and continuous payoffs (as in Athey (2001)). McAdams (2003) extends Athey’s result to include

multidimensional private information, and Van Zandt and Vives (2007) and Reny (2011) generalize

to the case of arbitrary lattices. These results cannot be directly applied because, as is common in

auction models, payoff discontinuities cannot be ruled out ex ante. Reny (1999) allows for discon-

tinuous utility functions, but does not permit private information; his results have been extended

by McLennan et al. (2011) and Barelli and Meneghel (2013).

The approach of establishing equilibrium as a limit of nearby discretized equilibria has been used

by, among others, Simon (1987), Reny and Zamir (2004), Bagh (2010), and Kastl (2012). In contrast

to my pure-strategy existence result under private information, Simon (1987) establishes existence

in mixed strategies, without private information.5 The limiting approach of Reny and Zamir (2004)

uses a similar method to prove the existence of pure-strategy equilibria in first-price auctions; like

my results here, it relies on convergence of utility, but unlike my results actions are point bids rather

than generic monotone functions. Kastl (2012) provides equilibrium in distributional strategies

with finite bid points, and uses this to suggest the same when bids can be arbitrary nonincreasing

functions of quantity.

The condition most directly related to the ability of my conditions to extend existence results

to divisible-good auctions with private information is a weakened form of reciprocal upper semi-

continuity. Similar conditions have been examined by Bagh and Jofre (2006), Bagh (2010), Allison

and Lepore (2014), and He and Yannelis (2016). Bagh and Jofre (2006) examines weak reciprocal

upper semicontinuity, which is not necessarily satisfied by divisible-good auctions; Condition 5 re-

quires only that most of the limiting utility can be obtained, and not that it can be dominated.

Bagh (2010) employs variational convergence, which invokes dominating sequences of actions; Con-

dition 5 can be weakened to require only that the dominating sequence of actions dominate the

5In later work, McAdams (2006) shows that these mixed strategies can be rendered into monotone pure strategies
without affecting best-responseness. Reny (1999) shows a related result, that in a particular multi-unit auction
model the mixed strategies predicted are in fact pure strategies. Other results regarding equilibrium in mixed or
distributional strategies include Milgrom and Weber (1985), Kastl (2012), and He and Yannelis (2016).
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original sequence (Condition 5), entirely avoiding behavior at the limit. Lastly, Allison and Lepore

(2014) and He and Yannelis (2016) introduce (random) disjoint payoff matching, again requiring

dominance in the limit. None of these conditions is obviously satisfied in divisible-good pay-as-bid

auctions.

Relatively little is known about bidder behavior in multi-unit auctions with private informa-

tion. Beyond the apparent theoretical difficulty of computing fully general revenue and efficiency

rankings, progress in the analysis of parameterized models has been hampered by the inability to

efficiently compute equilibrium strategies in the case where goods, as in practice, are imperfectly di-

visible. Meaningful results have been obtained in parameterized settings, e.g., Engelbrecht-Wiggans

and Kahn (2002), Ausubel et al. (2014), Lotfi and Sarkar (2016), and Burkett and Woodward

(2018).6 Häfner (2015) demonstrates the existence of an equilibrium in distributional strategies

in a discriminatory auction with constrained bids, but does not obtain a pure-strategy existence

result.

Where discrete problems appear intractible, continuous approximations may offer sound and

available economic insights. For example, the literature on single-unit auctions frequently employs

the assumption that the set of available prices is dense. In the case of multi-unit auctions, bids

may be approximated as objects determined on a dense domain of quantities, as well; there is no

counterpart to this possibility in single-unit auctions, or even in combinatorial auctions. Wilson

(1979) was the first to apply this approximation method in the context of multi-unit auctions, and

this approximation has been used to establish results for parameterized models such as Back and

Zender (1993), Wang and Zender (2002), Ausubel et al. (2014), and Pycia and Woodward (2019),

but in the general case it has not even been known if an equilibrium exists. Without a sound

basis for the existence of equilibrium strategies, it has been difficult to meaningfully apply the

divisible-good model to policy debates.

Section 3 lays out the main results of the model. Section 4 takes these results to a class of

divisible-good auctions, and proves the existence of pure-strategy equilibria as well as equilibrium

approximation. Section 5 concludes.

6There has been work in building approximate equilibria for multi-unit auctions; see, e.g., Armantier and Sbäı
(2006), Armantier et al. (2008), and Armantier and Sbäı (2009).
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2 Model

The primary model is given byM = (n, u, (XD, XR), A, F ); the term primary is used to distinguish

M from its discretizations, defined later. There is a finite set of agents i ∈ {1, . . . , n}. Agent i

has private information si ∼ F i, with support Supp si = S ≡ (0, 1)m. For all agents j 6= i, si

is independent of sj . Under Condition 1 below, it is without loss of generality to assume that si

is the product of m indepdendent uniform distributions, sik ∼ U(0, 1) and for all k′ 6= k, sik is

independent of sik′ .

Agents’ actions are isotone functions from domain XD ⊂ Rm to range XR ⊂ Rm. Both XD and

XR are compact and convex.7 Let Y be the set of monotone increasing functions from XD to XR.8

When agent i has signal si, her feasible action space is Ai(si) ⊆ Y ; A is the profile of feasible action

spaces, A = (Ai)ni=1.9 A strategy αi : S → Y is feasible for agent i if for all si, α
i(si) ∈ Ai(si). A

strategy profile α = (α1, . . . , αn) is feasible if αi is feasible for all i.

Agent i’s utility function is ui : Y n × S → R; u = (ui)
n
i=1 is the profile of utility functions.

Interim expected utility for agent i is defined with respect to her own information and her opponents’

strategies,

U i
(
ai, α

−i; si
)

= Es−i
[
ui
(
ai, α

−i (s−i) ; si
)∣∣ si] .

Unless otherwise stated, all norms are taken to be L1 on the relevant domain, ||a|| =
∫
||a(x)||dx

for functions and ||a|| = ∑m
i=1 |ai| for vectors.

2.1 ε-discrete model

The proof of equilibrium existence in the primary model M appeals to a sequence of equilibrium

strategy profiles in discretized models which approximate the primary model. The first step in this

process is defining the discrete approximations.

Given a primary model M and ε > 0, an ε-approximation Mε = (n, u,Xε, Aε, F ) is derived

from the primary model M by discretizing its feasible action spaces.

7The assumption that Supp si, XD, and XR are of common dimension m is without loss of generality so long as
each is of finite dimension.

8All results extend to the case in which different types play actions which are differently monotone, provided it is
known in advance which types will employ monotone increasing actions and which will employ monotone decreasing
actions. Allowing for this variation introduces additional technical overhead but little additional intuition. Similarly,
nonmonotone actions can be readily accommodated, provided the set of local extrema is exogenously fixed.

9Type-dependent action spaces are not essential to the results but greatly simplify the exposition.
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Definition 1 (Finite ε-approximation). Let Z ⊆ Rm be compact. Zε ⊆ Z is a finite ε-approximation

of Z if the following conditions hold:

1. Zε is finite;

2. For any z ∈ Z, there exists z ∈ Zε such that ||z − z|| < ε.

Let Xε = (Xε
D, X

ε
R), where Xε

D and Xε
R are finite ε-approximations of XD and XR, respectively.

Let Y ε be the set of isotone functions from Xε
R to Xε

D. For each agent i and each signal si,

Ai,ε(si) ⊆ Y ε. It need not be the case feasible actions in the discrete model are feasible in the

primary model, and potentially Ai,ε(si) 6⊆ Ai(si).

The role of the ε-discrete model is to ensure equilibrium existence in a sequence of models

approaching the primary model M. Whether a particular discretization is appropriate is a matter

of ease of satisfying the conditions set forth in Section 3; see the discussion of divisible-good auctions

in Section 4.

2.2 Equilibrium

In Section 3 I take a limit of equilibrium strategies in ε-discrete models to obtian a Bayesian Nash

equilibrium in the primary model M.

Definition 2 (Constrained Bayesian Nash equilibrium). A strategy profile (αi)ni=1 is a constrained

Bayesian Nash equilibrium if for all agents i,

Esi
[
U i
(
αi (si) , α

−i; si
)]

= sup
α

Esi
[
U i
(
α (si) , α

−i; si
)]

s.t. αi (si) ∈ Ai (si) ∀si.

A constrained Bayesian Nash equilibrium is a Bayesian Nash equilibrium in which agents are

constrained to implement feasible strategies. If the action space is degenerately type-dependent,

so that Ai(si) = Y for all agents i and types si, a constrained Bayesian Nash equilibrium is a

(standard) Bayesian Nash equilibrium.

For a strategy profile to be a constrained Bayesian Nash equilibrium it is only necessary that

each agent is ex ante best responding, or is best responding with probability 1. Under an additional

condition set forth in Section 3 it can be shown that there is a natural limit of ε-discrete equilibrium
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in which agents are certainly best responding.10 To capture this I define a constrained pure-strategy

equilibrium in the sense of McAdams (2003).

Definition 3 (Constrained pure-strategy equilibrium). A strategy profile (αi)ni=1 is a constrained

pure-strategy equilibrium if for all agents i and type realizations si,

U i
(
αi (si) , α

−i; si
)

= sup
a
U i
(
a, α−i; si

)
s.t. a ∈ Ai (si) .

As with the relation between constrained Bayesian Nash equilibrium and Bayesian Nash equi-

librum, when the type-dependent action space is irrelevant, so that Ai(si) = Y for all agents i and

types si, a constrained pure-strategy equilibrium is a (standard) pure-strategy equilibrium.

3 Results

3.1 Conditions for equilibrium existence

The conditions used to establish equilibrium existence in the primary model M are mostly stated

in interim utility to capture the intuition behind equilibrium existence. Most have related ex post

formulations which can be easier to work with; for an example, see Lemma 11 in Appendix A.

Condition 1 (Structure of fundamentals). For each agent i, ui is bounded, and increasing and

left-continuous in own signal si.
11 For all si, A

i(si) is a complete semilattice.

Bounded utility ensures the existence of convergent subsequences of equilibrium utilities,12 and

continuity ensures that agents who are close in type should have elements in their best responses

which are near one another. The lattice structure of actions ensures that monotonicity is a mean-

ingful concept.

Condition 2 (Imitability). For each agent i, si < s′i implies Ai(si) ⊆ Ai(s′i).

A natural construction of Ai is the set of actions which generate utility above some outside

option. For example, bids in a first-price auction should fall below the highest feasible value for

10Proving the existence of an equilibrium in which all types are best responding relies on left-continuity of utility
in signal and the construction of a particular limit of ε-discrete equilibrium. Nonetheless the intuitive reasons behind
the existence of the two different kinds of equilibria are fundamentally the same.

11A multidimensional function is left-continuous if it is coordinatewise left continuous in each argument.
12Where it is not of technical importance, I assume that sequences converge. Formally, all such arguments go

through when applied to convergent subsequences.
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the item, conditional on an agent’s information. Since utility is increasing in signal, under this

interpretation Ai is weakly increasing in set inclusion order. Under Condition 2, higher-type agents

can always imitate lower-type agents, but not vice-versa. Condition 2 is trivially satisfied when

feasible action spaces do not depend on the agent’s type.

Conditions on utility

Condition 3 (Uniform upper semicontinuity). There is a continuous function g : R+ × S → R+,

g(0; ·) = 0, such that for all agents i, all types si, all monotone strategy profiles (αj)j 6=i, all feasible

actions ai ∈ Ai(si), and all actions ai ∈ Y with ai ≤ ai,

U i
(
ai, α

−i; si
)
≤ U i

(
ai, α

−i; si
)

+ g (||ai − ai|| ; si) .

Condition 3 implies that agent i’s utility is upper semicontinuous in her own action, and that

the modulus of semicontinuity is uniform acrosss all actions, stategy profiles, and signals. Absent

type-dependent action spaces this condition is not necessarily satisfied in many cases of interest.

For example, in a first price auction a bidder can receive zero utility by submitting a bid above her

value but below all of her opponents’ bids. If her opponents’ bids are massed at her own bid, a small

increase in her bid can have a disproportionately negative effect on utility. Proper construction of

type-dependent action spaces plays an important role in the satisfaction of Condition 3.

Condition 4 (Local utility security). Let 〈(αj,t)j 6=i〉∞t=1 be a sequence of monotone strategies for

agents j 6= i, converging to the strategy profile (αj,?)j 6=i. For any feasible action ai ∈ Ai(si) and

any λ > 0, there is a feasible action a′i ∈ Ai(si) such that ||a′i − ai|| ≤ λ, and

lim
t↗∞

U i
(
a′i, α

−i,t; si
)
> U i

(
ai, α

−i,?; si
)
− λ.

Given an action for agent i and the limit of a sequence of her opponents’ strategies, Condition 4

requires that there is a nearby feasible action for agent i which yields, in the limit, nearly as much

utility. Local utility security is similar to payoff security, except that the sequence of opponent

strategies 〈(αj,t)j 6=i〉∞t=1 is not universally quantified: the specific a′i can depend on the sequence.

Following Condition 3, Condition 4 is frequently straightforward to satisfy by considering small
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upward deviations, a′i & ai

Condition 5 (Limit surplus splitting). Let 〈(αk,t)nk=1〉∞t=1 be a sequence of monotone strategies

converging to the feasible strategy profile (αk,?)nk=1. Suppose that there is an agent i such that

Pr s

(
lim
t↗∞

ui
(
αi,t (si) , α

−i,t (s−i) ; si
)
> ui

(
αi,? (si) , α

−i,? (s−i) ; si
))

> 0.

Then there is an agent j such that for any λ > 0 there is a sequence of feasible strategies 〈α̂j,t〉∞t=1

satisfying

1. For all t sufficiently large, ||α̂j,t(sj)− αj,t(sj)|| < λ for all types sj;

2. With positive probability, agent j’s utility improves under strategy α̂j,t,

Pr s

(
lim
t↗∞

uj
(
αj,t (sj) , α

−j,t (s−j) ; sj
)
< lim

t↗∞
uj
(
α̂j,t (sj) , α

−j,t (s−j) ; sj
))

> 0.

Condition 5 is related to reciprocal upper semicontinuity (Bagh and Jofre, 2006), but allows

for the possibility that all agents’ utilities face a simultaneous downward discontinuity in utility

as αt → α?. Limit surplus splitting intuitively suggests that the primary model M has winners

and losers, and a discontinuous loss in utility by one agent allows for an opponent to obtain a

discontinuous gain. That the agent’s opponents do not necessarily obtain a discrete increase in

interim utility allows for the fact that in the limit they might also lose interim utility. It follows

that Condition 5 is weaker than interim reciprocal upper semicontinuity.

Conditions on ε-discrete models

To obtain equilibrium existence I construct a sequence of equilibria in ε-discrete models; the fol-

lowing conditions place some restrictions on the discretization. For these conditions, let 〈εt〉∞t=1 be

a strictly decreasing sequence of real numbers converging to 0 and let 〈Mεt〉∞t=1 be an associated

sequence of ε-discretizations of the base model M.13

Condition 6 (Existence of discrete equilibrium). There is T such that, for all t ≥ T , Mεt admits

a monotone constrained Bayesian Nash equilibrium.

13Conditions 6 and 7 can be stated as “for ε > 0 sufficiently small.” The stated conditions offer a weaker formulation,
as it is only necessary conditions are satisfied on a particular path to 0, not all paths.
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Condition 6 is necessary for the proof of existence in the continuum-action case since equilibrium

is constructed as a limit of equilibria of the discretized models, hence there must be equilibria in the

discretized models. Satisfaction of Condition 6 can be verified with techniques from the equilibrium

existence literature; see Athey (2001), McAdams (2003), and Reny (2011), among others.

Condition 7 (Approximating action spaces). For all agents i and signals si:

1. For all ai ∈ Ai(si), there exists a monotone decreasing sequence 〈ati〉∞t=1 converging to ai, such

that ati ∈ Ai,εt(si) and ati ≥ ai for all t;

2. For all sequences 〈ati〉∞t=1, ati ∈ Ai,εt(si), and any convergent subsequence 〈atki 〉∞k=1, there is

a?i ∈ Ai(si) such that atki → a?i .

The first point of Condition 7 requires that any action in Ai(si) can be approximated from above

arbirarily closely, as the discretization becomes fine; approximation from above is practically useful

when utility is uniformly upper semicontinuous (Condition 3). The second point of Condition 7

requires that actions in the discretized models cannot be too far away from actions in the continuum

model; together with the first point, this can be viewed as any discretized action must approximate

some action in the base model, and any action in the base model can be approximated in sufficiently

fine discretized models.

Finally, I provide a condition under which the existence of constrained Bayesian Nash equilib-

rium implies the existence of constrained pure-strategy equilibrium, but which is not necessary to

obtain the existence of a Bayesian Nash equilibrium.

Condition 8 (Type insensitivity). Let Ai(si) = ∪s′i<siA
i(s′i). For all agents i, all opponent strategy

profiles α−i, all signals si, all λ > 0, and all ai ∈ Ai(si) \Ai(si), there is a′i ∈ Ai(si) such that

U i
(
a′i, α

−i; si
)
> U i

(
ai, α

−i; si
)
− λ.

Fixing a type si, Condition 8 requires that restricting an agent to actions which are feasible

for slightly lower types cannot discontinuously reduce her utility. When utility is left-continuous

in type (Condition 1) it will be the case that types s′i . si can obtain roughly the same utility

as type si. Constrained Bayesian Nash equilibrium can be translated to constrained pure-strategy

equilibrium by assigning nonbest-responding types to play the supremum of lower-types’ actions.
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3.2 Equilibrium existence

Proofs are found in Appendix A.

I now show that the stated conditions are sufficient for the existence of a Bayesian Nash equi-

librium. Assume the primary modelM satisfies Conditions 1-5. Let 〈εt〉∞t=1 be a strictly decreasing

sequence of real numbers converging to zero, and let 〈Mεt〉∞t=1 be an associated sequence of εt-

discretizations of the primary modelM satisfying Conditions 6-7. For simplicity I will refer to the

model as satisfying Conditions 1-7.

For any t, let (αi,t)ni=1 be a monotone Bayesian-Nash equilibrium in Mεt . Since each αi,t

is bounded, selection results (c.f. Widder (1941)) imply that there is a pointwise limit on any

countable set of points.14 It is useful that this set of points be dense, hence let XD = XD ∩ Qm

and S = S ∩Qm.

Lemma 1 (Pointwise convergence on countable set). There is a strategy profile (αi,�) such that

for all agents i, all x ∈ XD, and all s ∈ S,

lim
t↗∞

[
αi,t (s)

]
(x) =

[
αi,� (s)

]
(x) .

The sets XD and S are countable while XD and S are uncountable, hence the strategy profile

(αi,�)ni=1 comprised of functions on XD may have significant “holes.” Monotone functions on

compact domains are continuous almost everywhere (Lavrič, 1993), thus any monotone function

that coincides with αi,� on XD × S is L1-equivalent to αi,�.

Lemma 2 (Convergence to limit).15 For all agents i, ||α̂i−αi,�|| = 0 implies limt↗∞ ||αi,t−α̂i|| = 0.

Furthermore, with si-probability one,

lim
t↗∞

∣∣∣∣αi,t (si)− α̂i (si)
∣∣∣∣ = 0.

Any strategy which is L1-indistinguishable from αi,� is a limit point of 〈αi,t〉∞t=1. There is

freedom in the precise limit taken, permitting the construction of supremum-limit strategies αi.

14In a single dimension, Helly’s selection theorem guarantees that any sequence of bounded monotone functions on a
compact domain admits a convergent subsequence. In multiple dimensions these results appeal to total boundedness,
which is not exogenously guaranteed in many game theoretic models. Instead, pointwise convergence and monotonicity
are used to derive L1 convergence.

15In Appendix A this is proved as Lemmas 7 and 8.
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These are strategies at which each type realization si is playing an action that is the least upper

bound of actions for all lower type realizations s′i < si. Condition 1 requires that utility is left-

continuous in signal, thus an action which is the supremum of lower types’ best responses is a

natural action to examine as a type’s own best response.

Definition 4 (Supremum-limit strategy). αi is a supremum-limit strategy for agent i if for all

si ∈ S,

αi (si) = sup
s′i<si

αi,�
(
s′i
)
.

As strategies converge, so too does utility for almost all agents. This is the bulk of the proof of

equilibrium existence.

Lemma 3 (Utility convergence almost everywhere). For all agents i,

Pr si

(
lim
t↗∞

U i
(
αi,t (si) , α

−i,t; si
)
6= U i

(
αi (si) , α

−i; si
))

= 0.

Convergence of utility is established by separately showing that utility cannot jump up at the

limit, nor can it jump down at the limit, with positive probability. A rough sketch of the proof

highlights the role played by each condition.

Suppose an agent’s interim utility discontinuously improves at the limit. Local utility security

(Condition 4) implies that there is a constant action such that the agent can obtain nearly the

utility at the limit of all strategies, in the limit of opponent strategies. Discretized action spaces can

approximate actions from above (Condition 7), and uniform upper semicontinuity (Condition 3)

implies that these approximations cannot give utility discontinuously worse than the constant

action, which improved over the limit. Then if utility jumps up at the limit, there are actions in

the discretizations that improve the agent’s interim utility, contradicting the construction of the

sequence from equilibrium strategy profiles.

Suppose instead that an agent’s interim utility discontinuously falls at the limit. Limit surplus

splitting (Condition 5) implies that there is an opponent whose ex post utility, with positive prob-

ability, discontinuously increases at the limit. Essentially the same arguments from the case where

the agent’s interim utility discontinuously improves hold in this case for the agent’s opponent, be-

ing careful to account for the fact that the opponent’s interim utility may not be discontinuously

14



improving at the limit. Again, the construction of the sequence from equilibrium strategy profiles

is contradicted.

Returning to Condition 4 gives that supremum-limit strategies are mutual best responses.

Theorem 1 (Constrained Bayesian Nash equilibrium). Suppose that Conditions 1-7 are satisfied.

Then the supremum-limit strategy profile (αi)ni=1 forms a monotone constrained Bayesian Nash

equilibrium in the model M. For all agents i,

Esi
[
U i
(
αi (si) , α

−i; si
)]
≥ sup

ai∈Ai(si)
Esi
[
U i
(
ai, α

−i; si
)]
.

Corollary 1 (Symmetric equilibrium). Suppose that Conditions 1-7 are satisfied. If Ai = Â

and ui = û for all agents i, then M admits a symmetric monotone constrained Bayesian Nash

equilibrium (α̂)ni=1.

If agent i has an action ai which discretely improves on αi(si), she has an action close to ai which

is an improvement over some αi,t against (αj,t)j 6=i. For εt sufficiently small, ai can be approximated

into Ai,εt(si) at a loss that is of order g(Cεt; si). Since (αj,t)nj=1 is a Bayesian Nash equilibrium, in

which almost all signal realizations are best-responding, this is a contradiction if a positive mass of

agents have utility-improving actions.

Supremum-limit strategies are useful but not necessary to obtain a Bayesian Nash equilibrium

as the limit of discrete equilibria. Lemma 2 establishes that actions are converging with probability

one (with respect to type realization), and the proof of Lemma 3 can be adapted to show that at all

such type realizations agents are best-responding. However, the construction of a constrained pure-

strategy equilibrium requires the satisfaction of Condition 8 and the construction of supremum-limit

strategies.

Theorem 2 (Constrained pure-strategy equilibrium). Let (αi)ni=1 be a monotone constrained Bayesian

Nash equilibrium in supremum-limit strategies. If Condition 8 is satisfied, the strategy profile (αi)ni=1

is a monotone constrained pure-strategy equilibrium: for each agent i and all signal realizations si,

U i
(
αi (si) , α

−i; si
)
≥ sup

ai∈Ai(si)
U i
(
ai, α

−i; si
)
.

Finally, the preceding results establish existence of constrained equilibrium, in which actions
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must be feasible. With a further condition on the nature of type-dependent action spaces, equilib-

rium existence obtains in the derived model in which Ai ≡ Y for all agents i, and an equilibrium

with type-independent action spaces is equivalent to a standard equilibrium.

Theorem 3 (Unconstrained equilibrium existence). Suppose that for all y ∈ Y , all opponent

strategy profiles α−i, and all λ > 0, there exists ai ∈ Ai(si) such that

U i
(
ai, α

−i; si
)
> U i

(
y, α−i; si

)
− λ.

Let (αi)ni=1 be a monotone constrained pure-strategy equilibrium in supremum-limit strategies of the

model M. Then the strategy profile (αi)ni=1 is a monotone constrained pure-strategy equilibrium in

the model MY = (n, u,X,AY , F ), where AY i(si) = Y .

3.3 Equilibrium approximation

The construction of equilibrium in M as a profile supremum-limit strategies suggests that equi-

librium in M may be near equilibrium in the εt-discretization Mεt .16 In these results, I assume

that 〈(αi,t)ni=1〉∞t=1 is a sequence of monotone constrained Bayesian Nash equilibria of the εt-discrete

models Mεt converging to the supremum-limit strategy profile (αi)ni=1.

Definition 5 (Utility-relevant function). Let (W,TW ) be a topological space. A function w : Y n →

W is utility-relevant if for any convergent sequence of strategy profiles, 〈αt〉∞t=1 → α?, w(αt(s)) 6→

w(α?(s)) implies that there is an agent i such that ui(αt(s); si) 6→ ui(α?(s); si).

A utility-relevant function is a mapping from actions to a set W such that its own discontinuities

imply discontinuities in some agent’s utility. For example, in many auction models quantity allo-

cations are utility relevant: a discontinuous change in utility in general represents a discontinuous

change in quantity.17

16In models in which equilibrum is unique this approximation is strict, in the sense that all equilibria converge to
the unique equilibrium inM. Without uniqueness the strongest statement possible is, “The sequence of equilibria in
Mεt contains a subsequence which converges to an equilibrium of M.”

17In auction models without private information it is straightforward to construct sequences of actions at the limit
of which quantity is discontinuous but utility is not (for related examples, see Reny (1999) and Jackson et al. (2002),
among others). With massless private information and strictly monotone private values, these constructions go away.
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Theorem 4 (Equilibrium approximation). Let (W,TW ) be a topological space, and suppose that

w : Y n →W is utility-relevant. Then for almost all type profiles s,

lim
t↗∞

w
(
αt (s)

)
= w (α (s)) .

Proof. This is an immediate consequence of utility-relevance of w and the construction of αi as a

limit of αi,t at which almost all utilities converge.

Corollary 2 (Probabilistic approximation). Let w : Y n →W be utility-relevant. Then

w
(
αt (s)

) P−→ w (α (s)) .

Corollary 2 establishes that the base model may be empirically near its discretizations. Since

models in which the underlying action space is a continuum — or, in this case, mappings from one

continuum to another — are frequently meant as approximations of discrete real-world applications,

Corollary 2 suggests that such models may be empirically useful; in Section 4 I use this result to

show that in common multi-unit auction formats equilibrium allocations and revenues converge.

It is straightforward extend the model to explicitly include exogenous independent randomness

Z, such as might be necessary for an anonymous tiebreaking rule in an auction. Theorem 4

and Corollary 2 naturally extend to this setting, when utility relevance is adjusted to account

for the exogenous randomness Z. This extension necessitates additional notation without offering

additional insight, so I do not pursue it here.

4 Application: divisible-good auctions

I now apply the equilibrium existence results from Section 3 to prove that equilibrium exists in

divisible-good auctions with private information. There are n ≥ 2 bidders, i ∈ {1, . . . , n}, partic-

ipating in an auction for Q̂ units of a perfectly divisible commodity, where Q̂ is determined by a

random realization zQ ∼ U(0, 1) and Supp Q̂ ⊂ [0, Q̄]. Bidder i’s type si ∼ U(0, 1) is private infor-

mation, and for all agents j 6= i, si and sj are independent. Bidder i has marginal value function

vi : [0, Q̄]× (0, 1)→ R+, where vi(q; si) is her marginal value for quantity q when her type is si. v
i
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is bounded, decreasing in q, and strictly increasing and continuous in si.

Bidders compete for shares of the aggregate quantity Q̂. Bidder i submits a weakly positive,

weakly decreasing bid function bi to the auctioneer, expressing her marginal willingness to pay for

quantity q. Bidder i’s bidding strategy is βi, so that when her type is si she submits bid function

bi = βi(·; si). I will denote the bidder’s implicit demand functions by ϕi and ϕi,

ϕi (p; si) = sup
{
q : βi (q; si) ≥ p

}
, ϕi (p; si) = inf

{
q : βi (q; si) ≤ p

}
.18

Conditional on the random shock zQ, the auctioneer aggregates the submitted bid functions and

computes the market-clearing price p?,

p? = inf

{
p :

n∑
i=1

ϕi (p; si) ≤ Q̂ ≤
n∑
i=1

ϕi (p; si)

}
.19

Given this price, the auctioneer allocates to each agent her demand at this price. If ϕi(p?; si) =

ϕi(p?; si) for all i, then qi(s1, . . . , sn) = ϕi(p?; si). Otherwise, the auctioneer employs a random

priority tiebreaking rule.20 Let zq be a random permutation of agents {1, . . . , n}, let ι(i) be such

that zqι(i) = i, and let T (p) =
∑n

i=1 ϕ
i(p; si) − ϕi(p; si) be rationable demand at p. Bidder i’s

allocation is

qi
(
bi, b−i; p, zq

)
= ϕi (p; si) + min

T (p)−
∑

ι(k)<ι(i)

ϕk (p; sk)− ϕk (p; sk ) , ϕi (p; si)− ϕi (p; si)


+

.

Henceforth let z = (zQ, zq).

Once allocations are determined the auctioneer computes transfers from each of the bidders.

To capture many common auction formats I define a standard transfer rule.

Definition 6 (Standard transfer rule). Let Y be the set of monotone decreasing functions from

[0, Q̄]→ R+. The transfer rule τ i : [0, Q̄]× Y × R+ × Y n−1 × SuppZ is standard if

18If there is no q such that βi(q; si) ≥ p, then ϕi(p; s) = 0, and if there is no q such that βi(q; si) ≤ p, then
ϕi(p; s) = Q̄. Because bids are defined only on the domain of available quantities, ϕi(0; si) = Q̄. That ϕi(0; si) = Q̄
for all i and all s ensures that all acceptable bid functions will generate well-defined market outcomes.

19Although p? is a function of (βi)ni=1 and zQ, for simplicity of notation I write it as its own random variable. The
dependence of p? on its inputs will be treated properly where necessary.

20As noted in Häfner (2015) and elsewhere, the tiebreaking rule is not essential to the existence of a pure-strategy
equilibrium in the multi-unit discretization of the divisible good model. Corollary 5 shows that this carries over to
the divisible-good model itself.

18



1. τ i ≡ τ is symmetric across agents;

2. τ is increasing and uniformly continuous in the bidder’s allocation q, the bidder’s submitted

demand bi, the market-clearing price p, and opponent bids b−i;

3. d+τ/dq ∈ [p, bi(q)] for all q such that bi(q) > p;

4. Interim expected transfers Es−i [τ(qi; bi, p, b−i, z)] are submodular in bid.

Remark 1. Many common auction formats employ standard transfer rules:

• When τ(q; bi, p, b−i, z) =
∫ q

0 bi(x)dx, the mechanism is a discriminatory auction;

• When τ(q; bi, p, b−i, z) = pq, the mechanism is a uniform-price auction;21

• When τ(q; bi, p, b−i, z) = λ
∫ q

0 bi(x)dx+ (1− λ)pq, the mechanism is a hybrid auction;

• When τ(q; bi, p, b−i, z) = p̄αq̄ +
∫ q
q̄ bi(x)dx, and p̄α is the α bid percentile and q̄ = ϕi(p̄α), the

mechanism is a quantile-hybrid auction.

Given the transfer rule t, bidder i’s ex post utility is

ui (bi, b−i; si) = Ez

[∫ qi(bi,b−i;z)

0
vi (x; si) dx− τ

(
qi (bi, b−i; p

?, z) ; bi, p
?, b−i, z

)]
.

Translating the divisible-good auction to the existence model, let XD = [0, Q̄] and XR = [0, b̄],

where b̄ > maxi supsi v
i(0; si). Let Y γ ⊂ Y be the set functions in Y which are Lipschitz continuous

with modulus γ. For an agent i with type si, the feasible action space is

Ai (si) =
{
y ∈ Y γ : y ≤ vi (·; si)

}
.22

21In divisible-good auctions the market price p is perfectly recoverable from bi, b−i, and z. If p is omitted as an
argument to the transfer rule, the uniform-price auction is non-standard since payments are not uniformly continuous
in bid — a small change in submitted bids can dramatically affect the market clearing price. A standard transfer rule
must have a representation which is uniformly continuous in its parameters, but this representation does not need to
be unique.

22Kastl (2012) gives a model in which bidders in a uniform-price auction submit bids that are occasionally above
their value functions. Similarly, Bertrand competition without private information involves submitting a constant
bid “to infinity.” The results here establish the existence of an equilibrium in which all bidders submit bids weakly
below their value functions, but do not claim that all equilibria must exhibit this property. In related work, Pycia and
Woodward (2019) show in a model without private information that all relevant bids must be weakly below values.
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Since values are weakly decreasing in quantity and vi(0; si) < b̄ for all agents i and type realizations

si, A
i(si) contains all weakly positive, Lipschitz γ-continuous decreasing functions that are bounded

above by the agent’s true marginal value.23

Lemma 4 (Current transfer continuous in bid). Let ε > 0, and let b ∈ Ai(si) and b′ ∈ Y be such

that ||b− b′|| < ε. Then there is λ > 0 such that for any q, any z, and any bid profile b−i of bidder

i’s opponents, ∣∣τ (q; b, p?, b−i, z)− τ
(
q; b′, p?′, b−i, z

)∣∣ < λ.

Proof. By construction, ||b − b′|| < ε. Since bidder i’s allocation must weakly increase, the effect

on price can be bounded by |b(qi) − b′(qi)|. Because bids are Lipschitz γ-continuous, it must be

that |b(qi)− b′(qi)| ≤
√

2γε. Uniform continuity of τ in its arguments completes the proof.

I prove the existence of a pure-strategy equilibrium by verifying the conditions necessary to

apply Theorem 3. Conditions 1 and 2, on the structure of utility and the type-dependent action

spaces, are straightforward to demonstrate, and are omitted. Detailed proofs of the following results

are given in Appendix B.

Condition 3 (Uniform upper semicontinuity). Quantity allocations are monotone in bid, and

a slight increase in bid from b to b′ will never negatively affect quantity. If bid b′ yields strictly

greater quantity, since the original bid b was below the agent’s marginal value vi(·; si), b′ can be

only slightly above the agent’s marginal value function vi(·; si), and any gross utility loss from

additional quantity is small. Lemma 4 gives that transfers for units already won are continuous in

bid. Taken together, this implies that upward deviations cannot be discretely harmful.

Condition 4 (Local utility security). Consider any feasible bid function bi and λ > 0. When

bidder i increases her bid from bi to bi + λ, bounded where appropriate by vi(·; si), uniform upper

semicontinuity implies that bidder i’s utility in the limit is not discretely worse than her utility at

the limit. As opponents’ bids converge, a discrete upward shift in bidder i’s bid will yield a weak

increase in the quantity she is allocated. If this is not true at the limit, the discrete gap in bids

implies that her opponents’ actions are not converging. Since the upward shift is near a feasible

23Lipschitz continuity of bids is inessential and is used to ensure that the the market-clearing price p? is well-
behaved in bids; it is eliminated in Proposition 1. When t can be written indepedent of the market-clearing price —
as in the discriminatory and quantile-hybrid auctions — the Lipschitz constraint can be ignored. It is retained so
that existence can be proved simultaneously in all auctions with standard transfers.
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Figure 1: If agent i’s utility does not converge in the limit of agent j’s actions to her utility at the
limit of agent j’s actions, it must be that quantity is not converging; if quantity is not converging, it
must be that bids are equal and along a common flat. On this interval the tiebreaking rule must be
employed, hence a small upward deviation will yield a discretely greater allocation; this deviation
is feasible by the assumption that utility is not converging.

action profile, any losses caused by increasing her bid are commensurate to the size of the shift.

This intuition is illustrated in Figure 1.

Condition 5 (Limit surplus splitting). Surplus splitting is implied by market clearing. In

particular, i’s utility can jump down at the limit only if her allocated quantity jumps down or her

transfer jumps up. Lemma 4 rules out the latter the case. If quantity allocated jumps down with

positive probability, then by market clearing there is an opponent who, with positive probability,

witnesses a discrete quantity increase at the limit. Since bids are bounded above by values, the

opponent’s utility will increase. This is shown in Lemma 22.

Condition 8 (Type insensitivity). If a particular type si has a best response that is not

available to lower type realizations, continuity of marginal value in type and the upper bound on
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the feasible action space imply that the best response is occasionally equal to her marginal value.

Consider an alternate bid function that is at least λ′ below the bidder’s marginal value. Since

standard transfers are monotone in own bid, this will weakly decrease the bidder’s payment for

any allocation; however, it may also reduce the quantity she receives. If this slight reduction in bid

reduces her allocation, her best response must be close to her true marginal value function. The

lost quantity does not result in much lost utility, and the bidder can achieve most of her maximum

utility by constraining her bid to be within lower types’ feasible action spaces.

The remaining conditions for constrained equilibrium existence require an appropriate sequence

of ε-discrete models. For this, let 〈εt〉∞t=1 be a decreasing sequence converging to zero, and for any

ε > 0 let Xε
D and Xε

R be given by

Xε
D = Zε ∩XD, Xε

R = Zε2 ∩XR.

Let Y ε be the set of decreasing functions from Xε
D to Xε

R. For any si, let Ai,ε(si) be given by

Ai,ε (si) =
{
y ∈ Y ε : y (x)− y (x+ ε) ∈ (0, γε] , and vi (kε; si) > 0 =⇒ y (kε) ≤ vi (kε; si) + ε2

}
.

That is, the set of feasible bid functions is the set of strictly decreasing and Lipschitz γ-continuous

functions on Xε
D that are not too far above values (on Xε

D). Equilibrium existence is assured in

discrete discriminatory and uniform-price auctions, even without the Lipschitz constraint (Reny,

2011). Lipschitz continuity unifies the proof of equilibrium existence across all divisible-good auc-

tions with common transfers, and does not affect equilibrium existence. Appendix B gives formal

proofs that this ε-discretized model satisfies the appropriate conditions.

Lemma 5 (Constrained equilibrium existence in divisible-good auctions). When transfers are

standard and bids are Lipschitz continuous and weakly below values, divisible-good auctions with

private information admit monotone constrained pure-strategy equilibria.

Type-dependent action spaces can be relaxed. If a bid function is infeasible, it is somewhere

above the bidder’s true marginal value. Consider an alternative bid function, shifted upward slightly

from the original and bounded above by the bidder’s true value; this alternative bid function is

feasible. Vertical shifts cannot discontinuously affect the market-clearing price, so the transfer to
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the auctioneer varies continuously in this deviation, holding quantity fixed. Then if this deviation

is discontinuously unprofitable it must be that quantity is falling, and for quantity to fall discontin-

uously it must be as a result of bounding the bid function above by marginal value. Anytime a bid

above marginal value determines the quantity allocation the market price is above marginal value,

and under a standard transfer rule the marginal payment for this unit is above its marginal value.

It follows that the alternative bid cannot be discontinuously unprofitable. Then the antecedent of

Theorem 3 is satisfied, and there exists an equilibrium in the auction model without type-dependent

action spaces.

Corollary 3 (Lipschitz equilibrium existence in divisible-good auctions). When transfers are stan-

dard and bids are Lipschitz continuous, divisible-good auctions with private information admit

monotone pure-strategy equilibria.

The approach taken in Section 3 to establish equilibrium existence applies equally well to

convergence as the Lipschitz modulus approaches infinity. Bids and aggregate demand converge,

and for any signal profile the market price either converges or jumps discontinuously downward.

If all terms are converging, that limiting strategies constitute an equilibrium follows the same

argument used to show that the limit of discrete equilibria is an equilibrium. If market price jumps

down at the limit, either no agent’s utility is affected (as in a discriminatory auction) or some agent

sees a discrete utility improvement at the limit. But as in earlier arguments this agent could have

realized this utility improvement near the limit, contradicting the limit being constructed from a

sequence of equilibria.

Proposition 1 (Equilibrium existence in divisible-good auctions). Divisible-good auctions with

standard transfers and private information admit monotone pure-strategy equilibria.

As concerns market outcomes, it is straightforward to show that allocations are utility-relevant:

a discrete shift in allocation is associated with a discrete loss of per-unit margins. This immediately

implies that seller revenues are also utility-relevant. Theorem 2 then implies that quantity and

revenue in the εt-discrete auctions are approximated by quantity and revenue in the divisible-good

auction.

Corollary 4 (Probabilistic convergence of observables). Let q : Y → Rn+ and π : Y → R+ represent

ex post expected allocations and revenue, respectively, in the divisible-good model M. If 〈βt〉∞t=1 is a
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sequence of monotone pure-strategy equilibria in the εt-discrete models converging to the supremum-

limit strategy profile β, then

q
(
βt (s)

) P−→ q
(
β (s)

)
and π

(
βt (s)

) P−→ π
(
β (s)

)
.

5 Conclusion

This article proves the existence of monotone Bayesian Nash and pure-strategy equilibria in games

in which actions are monotone functions. Application of these results to an economic model requires

the specification of type-dependent action spaces and a sequence of discretized models such that

(Condition 3) slight upward deviations are not discretely harmful, (Condition 4) utility at a limit

of actions can be nearly achieved in a limit of actions, (Condition 5) one agent’s loss can be

transformed into another agent’s gain, and (Condition 6) the discretized models each admit a

monotone Bayesian Nash equilibrium. Equilibrium existence is established by examining a limit

of a sequence of equilibria of discretized models, and showing that utility must converge. This

result immediately suggests that equilibrium (and equilibrium outcomes) in the primary model can

provide an approximation of equilibria in the nearby discrete games.

I apply these results to a model of divisible-good auctions with private information, under

constraints on the transfers made to the auctioneer. These models satisfy the conditions set forth

for equilibrium existence, allowing me to establish equilibrium existence in a broad class of divisible-

good auctions. The equilibrium approximation results show that quantity allocations and seller

revenue in the divisible-good model are close to their counterparts in nearby multi-unit auctions.

This suggests that the divisible-good auction model could be a fruitful approach to understanding

multi-unit auctions, which are currently believed to be intractable.
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A Proofs of main results

The proof of equilibrium existence proceeds by defining limiting strategies, derived from equilibria of

a sequence of εt-discrete modelsMεt . Because the proofs below frequently consider sets constrained

to the rational numbers, the following shorthands from the main text are useful:

S ≡ S ∩Qm, SC ≡ S \ S; X ≡ XD ∩Qm, XC ≡ XD \ Qm.

Definition 7 (Limiting strategies). Strategies (αi,�)ni=1 are limiting strategies if there exists a

monotone decreasing sequence 〈εt〉∞t=1, εt ↘ 0, and a sequence of equilibria of the εt-discrete model

Mεt, 〈(αi,t)ni=1〉∞t=1 such that:

1. αi,� is monotone in all arguments;

2. For all (x, si) ∈ X × S, [αi,t(si)](x)→ [αi,�(si)](x).

At all rational coordinate pairs, limiting strategies take values equal to the limits of equilibrium

strategies in the εt-discrete models at these points. When either coordinate is irrational, limiting

strategies may take any value which satisfies the stated monotonicity constraints. Monotonicity of

αi,�(si), as stated in point 1 above, is guaranteed by monotonicity of functions in Ai(si), however

monotonicity of [αi,�(·)](x) must be explicitly stated: although the existence results in Reny (2011)

guarantee the existence of a monotone equilibrium in Mεt , it is possible that in some contexts a
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nonmonotone equilibrium will exist. The proof of existence below assumes that both strategies and

actions are monotone, hence point 1 is crucial.

Lemma 6 (Existence of limiting strategies). Given any monotone decreasing sequence 〈εt〉∞t=1,

there is a subsequence 〈εtk〉∞k=1, that admits limiting strategies (αi,�)ni=1

Proof. Condition 6 ensures that for all t, there is a pure-strategy equilibrium (αi,t) of the εt-discrete

model Mεt . Selection results (Widder (1941), Theorem 16.1) imply that for any countable X̃ × S̃

there is a subsequence 〈εtk〉∞k=1 such that [αi,tk(si)](x) → [αi,�(si)](x) pointwise for all i and all

(x, si) ∈ X̃ × S̃. For any such sets monotonicity of αi,� is guaranteed by the fact that αi,t is

monotone for all i and all εt. The desired result follows from letting X̃ = X and S̃ = S.

Proof of Lemma 1 (main text). This is a restatement of Lemma 6, under the maintained assump-

tion that all sequences converge.

Lemma 7 (L1 convergence on S). Let (αi,�)ni=1 be limiting strategies associated with some sequence

〈(αi,t)ni=1〉∞t=1 of Mεt-equilibria. Then for all i and all si ∈ S, αi,t(si)→ αi,�(si).

Proof. Suppose that αi,�(si) is continuous at some x ∈ XD. Then for all λ > 0 there is a δ > 0

such that |[αi,�(si)](x) − [αi,�(si)](x + δ′)| < λ for all δ′ ∈ (−δ, δ). Since Q is dense, there are

x`, xr ∈ X × (x− δ, x+ δ) such that x` < x < xr; by pointwise convergence of αi,t to αi,� on X ×S,

there is a T such that |[αi,t(si)](x′)− [αi,�(si)](x
′)| < λ for x′ ∈ {x`, xr} and all t > T .

The difference between [αi,�(si)](x`) and [αi,�(si)](xr) is bounded,

∣∣[αi,� (si)
]

(x`)−
[
αi,� (si)

]
(xr)

∣∣ =
∣∣[αi,� (si)

]
(x`)−

[
αi,� (si)

]
(x)
∣∣

+
∣∣[αi,� (si)

]
(x)−

[
αi,� (s)

]
(xr)

∣∣ < 2λ.

This implies

∣∣[αi,t (si)
]

(x`)−
[
αi,t (si)

]
(xr)

∣∣ ≤ [ ∣∣[αi,t (si)
]

(x`)−
[
αi,� (si)

]
(x`)

∣∣
+
∣∣[αi,� (si)

]
(x`)−

[
αi,� (si)

]
(xr)

∣∣
+
∣∣[αi,� (si)

]
(xr)−

[
αi,t (si)

]
(xr)

∣∣ ] < 4λ.
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Since αi,t(si) is monotone, this further implies that |[αi,t(si)](x′) − [αi,t(si)](x)| < 4λ for x′ ∈

{x`, xr}. Then

∣∣[αi,t (si)
]

(x)−
[
αi,� (si)

]
(x)
∣∣ ≤ [ ∣∣[αi,t (si)

]
(x)−

[
αi,t (si)

]
(x`)

∣∣
+
∣∣[αi,t (si)

]
(x`)−

[
αi,� (si)

]
(x`)

∣∣
+
∣∣[αi,� (si)

]
(x`)−

[
αi,� (si)

]
(x)
∣∣ ] < 6λ.

Since λ > 0 may be arbitrarily small, it follows that there is T ′ such that |[αi,t(si)](x)−[αi,�(si)](x)| <

λ for all t > T ′. Then [αi,t(si)](x)→ [αi,�(si)](x) whenever αi,�(si) is continuous at x.

Since αi,�(si) is a monotone bounded function, it has at most a measure-zero set of discontinu-

ities; hence [αi,t(si)](x)→ [αi,�(s)](x) for almost all x, and thus αi,t(si)→ αi,�(si).

Limiting strategies are defined almost nowhere. However, since limiting strategies are monotonic

in all dimensions and map into a compact space, they can be used to naturally define functions on

all of S ×XD.

Recall that a strategy αi is a supremum-limit strategy if αi,� is the pointwise limit of some

sequence of equilibrium strategies 〈αi,t〉∞t=1 and αi(si) = sups′<si α
i(s′) for all si. The choice of

supremum in this construction relates to Condition 3, which ensures that small upward deviations

are not discretely unprofitable. In what follows, I will fix a particular convergent sequence of dis-

cretized equilibria 〈(αi,t)ni=1〉∞t=1, an associated limiting strategy profile (αi,�)ni=1, and an associated

supremum-limit strategy profile (αi)ni=1.

Lemma 8 (Almost-sure convergence to supremum-limit strategies). For all i, αi,t(si) → αi(si)

with probability one.

Proof. This proof is made notationally simpler by using measure-theoretic language. Since si is

distributed as m independent uniform draws, it is without loss of generality to interchange Lebesgue

measure and signal probability.

Note that any limiting strategy αi,� has at most a measure-zero set of discontinuities (Lavrič,

1993), so αi,t → αi. Let α̃i be a completion of αi,� such that [α̃i(si)](x) = [αi,�(si)](x) whenever

[αi,�(·)](·) is continuous at (x; si); then |[αi,�(si)](x) − [α̃i(si)](x)| = 0; adapting arguments from

Lemma 7 implies that αi,t(si)→ α̃i(si).
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Let Sδ be the set signals s with δ-nonconvergent actions,

Sδ =

{
s′i : lim

t↗∞

∣∣∣∣αi,t (s′i)− α̃i (s′i)∣∣∣∣ > δ

}
,

 S0 =

{
s′i : lim

t↗∞

∣∣∣∣αi,t (s′i)− α̃i (s′i)∣∣∣∣ > 0

}
=
⋃
w∈N

S1/2w .

If s ∈ S0 with positive probability, then there is w ∈ N such that s ∈ S1/2w with positive probability.

Let µk be the Lebesgue measure on Rk. Consider the measure of all points of nonconvergence,

µm+m
({(

x, s′i
)

:
∣∣[αi,t (s′i)] (x)−

[
α̃i
(
s′i
)]

(x)
∣∣ 6→ 0

})
=

∫
S
µm
({

x : lim
t↗∞

∣∣[αi,t (s′i)] (x)−
[
α̃i
(
s′i
)]

(x)
∣∣ > 0

})
dµm

(
s′i
)

≥
∫
s′i∈S1/2w

µm
({

x : lim
t↗∞

∣∣[αi,t (s′i)] (x)−
[
α̃i
(
s′i
)]

(x)
∣∣ > 0

})
dµm

(
s′i
)
.

Let x, x ∈ Rm be upper and lower bounds, respectively, for XR, and define ∆ = ||x − x||. Note

that for any s′i ∈ S1/2w , the boundedness of Ai is sufficient to imply that24

µm
({

x : lim
t↗∞

∣∣[αi,t (s′i)] (x)−
[
α̃i
(
s′i
)]

(x)
∣∣ > 0

})
≥ 1

2w∆
.

Then it follows that

µm+m
({(

x, s′i
)

:
∣∣[αi,t (s′i)] (x)−

[
α̃i
(
s′i
)]

(x)
∣∣ 6→ 0

})
≥
∫
s′i∈S1/2w

1

2w∆
dµm

(
s′i
)

=
µm
(
S1/2w

)
2w∆

> 0.

Then µm+m({(x, s′i) : |[αi,t(s′i)](x) − [α̃i(s′i)](x)| > 0}) > 0, contradicting the fact that αi,t → α̃i.

Since αi is a completion of αi,�, it follows that ||αi,t(si)− αi(si)|| → 0 for almost all si.

Definition 8 (Upper Mε-approximation). The upper Mε approximation aε of action a ∈ Ai(si)

is given by

aε (x) ∈ arginf
a′∈Ai,ε(si), a′≥a

∣∣∣∣a− a′
∣∣∣∣ .

Since Ai,εt is finite, Condition 7 ensures that an upper Mεt approximation of a exists.

24Technically this must also include a term for the possible difference between αi,t and the nearest element of
Ai(si). This difference is at most linear, and hence the argument does not change.
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Lemma 9 (Interim utility approximation). There is a constant C ∈ R+ such that for any ai ∈

Ai(si),

U i
(
aεi , α

−i; si
)
≥ U i

(
a, α−i; si

)
− g (Cε; si) .

Proof. Let x ∈ XD. Then if x − 3ε ∈ XD, there is x ∈ Xε
D such that x − 3ε < x < x. By

construction, aεi (x) < ai(x) + ε, and by monotonicity

aεi (x) ≤ aεi (x) < ai (x) + ε ≤ ai (x− 3ε) + ε.

Let x, x be upper and lower bounds, respectively, for XR. Since aεi is monotone, aεi ≥ y, and

XR ≥ 0,

||ai − aεi || =
∫
XD

|aεi (x)− ai (x)| dx

=

∫
XD

|aεi (x)| dx−
∫
XD

|ai (x)| dx

≤
∫
XD\(XD+3ε)

|x| dx+

∫
XD∩(XD+3ε)

|ai (x− 3ε) + ε|

−
∫
XD∩(XD−3ε)

|ai (x)| dx−
∫
XD\(XD−3ε)

|x| dx

≤ 3ε |x|+
∫
XD∩(XD−3ε)

|ai (x) + ε| − |ai (x)| dx ≤ 4ε |x| .

By construction, aεi ∈ Ai,ε(si) and ai ∈ Ai(si), hence Condition 3 implies that

U i
(
aεi , α

−i; si
)
≥ U i

(
ai, α

−i; si
)
− g (Cε; si) .

Corollary 5 (Existence of utility approximation). For t sufficiently large, given any a ∈ Ai(si),

there is aεt ∈ Ai,εt(si) such that

U i
(
aεt , α−i; si

)
≥ U i

(
a, α−i; si

)
− g (Cεt; si) .
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Lemma 10 (Almost no upward jumps at limit). For all agents i,

Pr si

(
lim
t↗∞

U i
(
αi,t (si) , α

−i,t; si
)
≥ U i

(
αi (si) , α

−i; si
))

= 1.

Proof. This is an application of Lemma 8, Condition 4, and Corollary 5. Lemma 8 implies that

with si-probability one,

lim
t↗0

∣∣∣∣αi,t (si)− αi (si)
∣∣∣∣ = 0.

Then it is sufficient to prove the claim of this Lemma under the assumption that agent i’s action

converges when her signal is si.

Assume that there is δ > 0 such that

lim
t↗∞

U i
(
αi,t (si) , α

−i; si
)
< U i

(
αi (si) , α

−i; si
)
− 3δ.

By Condition 4 there is a ∈ Ai(si) such that

lim
t↗∞

U i
(
a, α−i; si

)
> U i

(
αi (si) , α

−i; si
)
− δ > lim

t↗∞
U i
(
αi,t (si) , α

−i,t; si
)

+ 2δ.

For any t, Lemma 9 implies that there is aεt ∈ Ai,εt(si) such that

U i
(
aεt , α−i,t; si

)
≥ U i

(
a, α−i,t; si

)
− g (Cεt; si) .

Putting these inequalities together, it follows that

lim
t↗∞

U i
(
aεt , α−i,t; si

)
+ g (Cεt; si) > lim

t↗∞
U i
(
αi,t (si) , α

−i,t; si
)

+ 2δ.

Then there is T such that for all t > T ,

U i
(
aεt , α−i,t; si

)
> U i

(
αi,t (si) , α

−i,t; si
)

+ δ.

Since aεt is feasible for agent i in Mεt , this implies that αi,t(si) is not a best response. This can

only happen with probability zero, or αi,t is not a best response for agent i in Mεt .
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Lemma 11 (Ex post uniform upper semicontinuity). Condition 3 is satisfied if and only if there is

a continuous function ĝ : R+× (0, 1)m → R+, ĝ(0; ·) = 0, such that for all agents i, all si ∈ (0, 1)m,

all (aj)j 6=i ∈ Y n−1, ai ∈ Ai(si), and all ai ∈ Y with ai ≤ ai,

ui (ai, a−i; si) ≤ ui (ai, a−i; si) + ĝ (||ai − ai|| ; si) .

Proof. Given a feasible action profile (aj)j 6=i for agent i’s opponents, let α−i = (αj)j 6=i be a strategy

profile such that αj(·) = aj for all j 6= i. Then Condition 3 implies the above variant.

Now, fix a strategy profile α−i = (αj)j 6=i. Note that

U i
(
ai, α

−i; si
)

= Es−i
[
ui
(
ai, α

−i (s−i) ; si
)]

≥ Es−i
[
ui
(
ai, α

−i (s−i) ; si
)

+ g (||ai − ai|| ; si)
]

= U i
(
ai, α

−i; si
)

+ g (||ai − ai|| ; si) .

This implies Condition 3.

Lemma 12 (Convergence of monotone functions). Let 〈f t〉∞t=1 be a sequence of functions, f t : S ×

XD → XR, such that f t(s; ·) is monotone for all t and s. Suppose that for all s ∈ S, f t(s; ·)→ f?.

Then sup f t = inf{f ∈ Y : ∀s ∈ S f ≥ f t(s; ·)} → f?.

Proof. Suppose otherwise, and let f̄ t = sups∈S f
t and f̄? = limt↗∞ f̄

t. Since each f t is monotone,

f̄ t and hence f̄? are monotone and continuous almost everywhere (Lavrič, 1993). Then if ||f̄? −

f?|| 6= 0, there is δ > 0 and an x ∈ XD such that f? is continuous at x and f̄?(x) > f?(x) + 4δ,

and there is ε > 0 such that f?(x′) < f?(x) + δ for all x′ ∈ [x, x+ ε).

Since f̄ t → f̄?, for all T there is t > T such that f̄ t(x) > f?(x) + 3δ, and thus there is s ∈ S

such that f t(s;x) > f?(x) + 2δ. By monotonicity, it follows that f t(s;x′) > f?(x′) + δ for all

x′ ∈ [x, x+ ε), and ||f t(s; ·)− f?|| > εδ. Since ε and δ are independent of (sufficiently large) t, this

contradicts f t(s; ·)→ f?.

Lemma 13 (Almost no downward jumps at limit). For all agents i,

Pr si

(
lim
t↗∞

U i
(
αi,t (si) , α

−i,t; si
)
≤ U i

(
αi (si) , α

−i; si
))

= 1.
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Proof. This follows from Lemma 10, Conditions 3, 4, and 5, and Lemma 11. Let Si be the set of

signals for which agent i’s utility in the limit is strictly greater than her utility at the limit,

Si =

{
lim
t↗∞

U i
(
αi,t (si) , α

−i,t; si
)
> U i

(
αi (si) , α

−i; si
)}

.

Suppose that Pr(si ∈ Si) > 0, and let S−i : Si ⇒ Sn−1 be given by

S−i (si) =

{
s−i : lim

t↗∞
ui
(
αi,t (si) , α

−i,t (s−i) ; si
)
> ui

(
αi (si) , α

−i (s−i) ; si
)}

.

The boundedness of ui implies that for any si ∈ Si, Pr(s−i ∈ S−i(si)) > 0. Then by Condition 5

there is a δ > 0, an agent j, a set Sj with Pr(sj ∈ Sj) > 0, for each sj ∈ Sj a set S−j(sj)

with Pr(s−j ∈ S−j(sj)) > 0, and for any λ > 0 a sequence 〈α̂j,t〉∞t=1 with α̂j,t(sj) ∈ Aj(sj),

||α̂j,t(sj)− αj,?(sj)|| < λ for all t sufficiently large, such that for all sj ∈ Sj and s−j ∈ S−j(sj),

lim
t↗∞

uj
(
α̂j,t (sj) , α

−j,t (s−j) ; sj
)
> lim

t↗∞
uj
(
αj,t (sj) , α

−j,t (s−j) ; sj
)

+ 5δ.

Let ᾱj,t(sj) = α̂j,t(sj) ∨ αj,t(sj). Then by Condition 3 and Lemma 11, for all s−j ∈ S−j(sj),

lim
t↗∞

uj
(
ᾱj,t (sj) , α

−j,t (s−j) ; sj
)

≥ lim
t↗∞

uj
(
αj,t (sj) , α

−j,t (s−j) ; sj
)

+ 5δ − g
(∣∣∣∣ᾱj,t (sj)− α̂j,t (sj)

∣∣∣∣ ; sj)
≥ lim

t↗∞
uj
(
αj,t (sj) , α

−j,t (s−j) ; sj
)

+ 5δ − g (λ; sj) .

Then for λ sufficiently small,

lim
t↗∞

uj
(
ᾱj,t (sj) , α

−j,t (s−j) ; sj
)
> lim

t↗∞
uj
(
αj,t (sj) , α

−j,t (s−j) ; sj
)

+ 4δ.

For s−j /∈ S−j(sj),

lim
t↗∞

uj
(
ᾱj,t (sj) , α

−j,t (s−j) ; sj
)
> lim

t↗∞
uj
(
αj,t (sj) , α

−j,t (s−j) ; sj
)
− g (λ; sj) .
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By the law of iterated expectations,

U j
(
αj,t (sj) , α

−j,t; sj
)

= Pr (s−j ∈ S−j (sj))Es−j
[
uj
(
αj,t (sj) , α

−j,t (s−j) ; sj
)∣∣ s−j ∈ S−j (sj)

]
+ Pr (s−j /∈ S−j (sj))Es−j

[
uj
(
αj,t (sj) , α

−j,t (s−j) ; sj
)∣∣ s−j /∈ S−j (s−j)

]
.

Then

lim
t↗∞

U j
(
ᾱj,t (sj) , α

−j,t; sj
)

> lim
t↗∞

U j
(
αj,t (sj) , α

−j,t; sj
)

+ 4δ Pr (s−j ∈ S−j (sj))− g (λ; sj) Pr (s−j /∈ S−j (sj)) .

For λ sufficiently small,

lim
t↗∞

U j
(
ᾱj,t (sj) , α

−j,t; sj
)
> lim

t↗∞
U j
(
αj,t (sj) , α

−j,t; sj
)

+ 3δ.

Appealing to Corollary 5, let 〈α̃j,t〉∞t=1 be a sequence of strategies with α̃j,t(sj) ∈ Aj,εt(sj) for all sj

such that, for t sufficiently large,

U j
(
α̃j,t (sj) , α

−j,t; sj
)
> U j

(
ᾱj,t (sj) , α

−j,t; sj
)
− δ.

Then

lim
t↗∞

U j
(
α̃j,t (sj) , α

−j,t; sj
)
> lim

t↗∞
U j
(
αj,t (sj) , α

−j,t; sj
)

+ 2δ.

It follows that for t sufficiently large,

U j
(
α̃j,t (sj) , α

−j,t; sj
)
> U j

(
αj,t (sj) , α

−j,t; sj
)

+ δ.

Then αj,t(sj) is not a best response for agent j when her type is sj , against opponent play α−j,t in

model Mεt . Pr(sj ∈ Sj) > 0, contradicting αt being a constrained Bayesian Nash equilibrium.
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Definition 9 (Convergent agent-types). Agent i with type si is a convergent agent-type if

lim
t↗∞

∣∣∣∣αi,t (si)− αi (si)
∣∣∣∣ = 0, and

lim
t↗∞

U i
(
αi,t (si) , α

−i,t; si
)

= U i
(
αi (si) , α

−i; si
)
.

If either of these equalities does not hold, (i, si) is a nonconvergent agent-type.

Lemma 14 (Utility convergence). For all agents i,

Pr si ((i, si) is a convergent agent-type) = 1.

Proof. For each agent i, Lemma 8 establishes that Pr si(||αi,t(si) − αi(si)|| → 0) = 1. Lemma 10

implies that

Pr si

(
lim
t↗∞

U i
(
αi,t (si) , α

−i,t; si
)
≤ U i

(
αi (si) , α

−i; si
))

= 1.

Lemma 13 establishes that

Pr si

(
lim
t↗∞

U i
(
αi,t (si) , α

−i,t; si
)
≥ U i

(
αi (si) , α

−i; si
))

= 1.

The result is then immediate.

Lemma 15 (Best responses for convergent agent-types). For all agents i, αi(si) is a best response

to (αj)j 6=i with si-probability one.

Proof. Suppose that agent i has a better response ai when her type is si. Then there is δ > 0 with

U i
(
ai, α

−i; si
)
> U i

(
αi (si) , α

−i; si
)

+ 4δ.

By Condition 4 there is âi ∈ Ai(si) such that

lim
t↗∞

U i
(
âi, α

−i,t; si
)
> U i

(
ai, α

−i; si
)
− δ > lim

t↗∞
U i
(
αi,t (si) , α

−i,t; si
)

+ 3δ.
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Then there is T such that for all t > T ,

U i
(
âi, α

−i,t; si
)
> U i

(
αi,t (si) , α

−i,t; si
)

+ 2δ.

By Lemma 9, there is âεt ∈ Ai,εt(si) such that

U i
(
âεt , α−i,t; si

)
> U i

(
âi, α

−i,t; si
)
− g (Cεt; si) .

Then there is T ′ ≥ T such that for all t > T ′,

U i
(
âεt , α−i,t; si

)
> U i

(
αi,t (si) , α

−i,t; si
)

+ δ.

If this holds for a positive probability set of signals for agent i, this contradicts the construction of

constrained Bayesian Nash equilibrium in Mεt .

Lemma 16 (Best responses for nonconvergent agent-types). Under Condition 8, αi(si) is a best

response to (αj)j 6=i for all agents i and signals si ∈ S.

Proof. Suppose otherwise. Then there is ai ∈ Ai(si) and δ > 0 such that

U i
(
ai, α

−i; si
)
> U i

(
αi (si) , α

−i; si
)

+ 3δ

If ai ∈ Ai(si), then there is γ > 0 such that for all s′i < si with ||si − s′i|| < γ, ai ∈ Ai(s′i). Since

utility is increasing in signal and is upper semicontinuous in action,

U i
(
ai, α

−i; si
)
> U i

(
αi (si) , α

−i; si
)

+ 3δ

≥ U i
(
αi
(
s′i
)
, α−i; si

)
+ 3δ ≥ U i

(
αi
(
s′i
)
, α−i; s′i

)
+ 3δ.

Since utility is continuous in signal, for γ sufficiently small it will be the case that whenever

||si − s′i|| < γ,

U i
(
ai, α

−i; s′i
)
> U i

(
αi
(
s′i
)
, α−i; s′i

)
+ 2δ.

This contradicts the fact that type s′i is almost-surely best-responding. Then ai ∈ Ai(si) \Ai(si).
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By Condition 8 there is a′i ∈ Ai(si) such that

U i
(
a′i, α

−i; si
)
> U i

(
ai, α

−i; si
)
− δ.

Then there is a′i ∈ Ai(si) such that

U i
(
a′i, α

−i; si
)
> U i

(
αi (si) , α

−i; si
)

+ δ.

The rest of the proof proceeds identically to the above, implying a′i ∈ Ai(si)\Ai(si), a contradiction.

Lemma 17 (Implied type independence). The antecedents of Theorem 3 imply Condition 8.

Proof. Let (αj)j 6=i be a strategy profile for agent i’s opponents, and let ai ∈ Ai(si) \ Ai(si); by

definition, ai ∈ Y . Since ui is continuous in signal, there is s′i < si such that

U i
(
ai, α

−i; s′i
)
> U i

(
ai, α

−i; si
)
− 1

2
λ.

Taking as given the antecedents of Theorem 3, there is a′i ∈ Ai(s′i) such that

U i
(
a′i, α

−i; s′i
)
> U i

(
ai, α

−i; s′i
)
− 1

2
λ.

Since utility is increasing in signal, it follows that

U i
(
a′i, α

−i; si
)
> U i

(
a′i, α

−i; s′i
)
> U i

(
ai, α

−i; si
)
− λ.

By construction, a′i ∈ Ai(si), and Condition 8 is satisfied.

Proof of Theorem 3 (main text). Suppose otherwise. Then there is an agent i, a signal si ∈ S, an

action y ∈ Y , and a δ > 0 such that

U i
(
y, α−i; si

)
> U i

(
αi (si) , α

−i; si
)

+ 2δ.
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By assumption there is ai ∈ Ai(si) such that

U i
(
ai, α

−i; si
)
> U i

(
y, α−i; si

)
− δ.

It follows that

U i
(
ai, α

−i; si
)
> U i

(
αi (si) , α

−i; si
)

+ δ.

This directly implies that αi(si) is not a best response for agent i in the constrained-action gameM

when her type is si. Lemma 17 demonstrates that Condition 8 is satisfied whenever the antecedents

of Theorem 3 hold, and Lemma 16 then implies that αi(si) is a best response in M for agent i

when her signal is si, a contradiction.

B Divisible-good auctions

B.1 Standard transfer rules

Lemma 18 (Standard transfer rules). Each of the example transfer rules given in Section 4 is a

standard transfer rule.

Proof. It is straightforward to see that these transfer rules are symmetric and uniformly continuous

in their arguments, and that their derivatives are appropriately bounded. The random payment

auction has a submodular payment rule if the discriminatory and uniform-price auctions have

submodular payment rules; each of these latter two auctions has a submodular payment rule if the

quantile-hybird auction has a submodular payment rule.25

Let b, b′ be bid functions, and let b∨ = b ∨ b′ and b∧ = b ∧ b′. To prove modularity of expected

transfer, it suffices to show that for each z,

τ
(
q∨; b∨, p∨, b−i, z

)
+ t
(
q∧; b∧, p∧, b−i, z

)
≤ τ (q; b, p, b−i, z) + t

(
q′; b, p, b−i, z

)
,

where q∨ = qi(b
∨, b−i; z), p

∨ = p(b∨, b−i; z), and similarly for the other decorated parameters.

Under random priority tiebreaking, {q∨, q∧} = {q, q′} and {p∨, p∧} = {p, p′}. Fixing α ∈ [0, 1], it

25To see this, let α = 1 or α = 0 to generate the discriminatory and uniform-price auctions, respectively, from a
quantile-hybrid auction. In addition, McAdams (2003) establishes modularity of the discriminatory and uniform-price
payment rules.
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also holds that {pα∨, pα∧} = {pα, pα′}, where pα is the α-quantile bid when bidder i’s bid is b. It

is without loss to assume below that {qα∨, qα∧} = {qα, qα′}.26

Without loss of generality assume that p∨ = p; then q∨ = q, p∧ = p′, and q∧ = q′. For simplicity

of notation, suppress function arguments. Then establishing submodularity requires showing

pα∨qα∨ +

∫ q∨

qα∨
b∨dx+ pα∧qα∧ +

∫ q∧

qα∧
b∧dx ≤ pαqα +

∫ q

qα
bdx+ pα′qα′ +

∫ q′

qα′
b′dx. (1)

If q∨ = q, then b ≥ b′ for all x ∈ (q′, q). Then (1) can be rewritten as

pα∨qα∨ + pα∧qα∧ +

∫ q′

qα∨
b∨ − bdx ≤ pαqα + pα′qα′ +

∫ q′

qα∧
b′ − b∧dx−

∫ qα

qα∨
bdx−

∫ qα′

qα∧
b′dx.

The simplifying assumptions on α-quantile quantities imply pα∨qα∨+pα∧qα∧ = pαqα+pα′qα′. Then

the above is equivalent to

∫ q′

qα∨
b∨ − bdx ≤

∫ q′

qα∧
b′ − b∧dx−

∫ qα

qα∨
bdx−

∫ qα′

qα∧
b′dx. (2)

Note that qα∧ ≤ qα∨. If qα∨ = qα, inequality (2) is

∫ q′

qα∨
b∨ − bdx ≤

∫ q′

qα∧
b∨ − bdx =

∫ q′

qα∧
b′ − b∧dx.

If instead qα∨ = qα′, inequality (2) is

∫ q′

qα∨
b∨ − b′dx ≤

∫ q′

qα∧
b∨ − b′dx =

∫ q′

qα∧
b− b∧dx.

Then in either case, transfers are submodular.

B.2 Proofs for equilibrium existence in divisible-good auctions

The proof of Lemma 4 (in the main text) establishes that the market clearing price is uniformly

continuous in bidder i’s own bid, and can be easily adapted to show that the market clearing price

is uniformly continuous in all submitted bids. In light of this result, for compactness the proofs

26The only effect of this assumption is whether the α-quantile quantity is allocated at the α-quantile bid, or at the
submitted bid. Since these are equal it is without loss to make the simplifying assumption.
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below generally omit price as an argument to the transfer function τ . When a sequence of bids is

converging, so too is the market price, and uniform continuity of standard transfer rules implies

that the effect on price is irrelevant to convergence. All proofs can be adapted to explicitly include

the effect of a change in price. Henceforth, let τ(q; bi, b−i, z) = τ(q; bi, p
?(bi, b−i; z), b−i, z).

Lemma 19 (Satisfaction of Condition 3). The divisible-good auction with Lipschitz bids and a

standard transfer rule satisfies Condition 3.

Proof. For simplicitly we prove satisfaction of an ex post formulation of Condition 3 for any bid

profile, implying the interim formulation given in Condition 3 (see Lemma 11). Let bi ∈ Ai(si),

b−i = (bj)j 6=i be actions for agent i’s opponents, and bi ∈ Y , bi ≥ bi. Define λ = ||bi − bi||, and for

compactness let qi and qi be allocations under bids bi and bi, respectively, and τ(·; bi) and τ(·; bi)

be the associated transfers. Then the difference in ex post utility is given by

ui
(
bi, b−i; si

)
− ui (bi, b−i; si) = Ez

[∫ qi

0
vi (x; si) dx− τ

(
qi; bi

)
− Ez

[∫ qi

0
vi (x; si) dx− τ (qi; bi)

]]
.

Allocations are monotone in bid, so qi(bi, b−i; z) ≥ qi(bi, b−i; z). Since the transfer rule is standard,

ui
(
bi, b−i; si

)
− ui (bi, b−i; si)

≥ Ez
[∫ qi

0
vi (x; si) dx− τ

(
qi; bi

)]
− Ez

[∫ qi

0
vi (x; si) dx− τ (qi; bi)

]
+ Ez

[∫ qi

qi

vi (x; si)− bi (x) dx

]
= Ez

[
t (qi; bi)− τ

(
qi; bi

)]
+ Ez

[∫ qi

qi

vi (x; si)− bi (x) dx

]
.

Lemma 4 implies that the left-hand term is uniformly bounded in λ. Further, since bi ≤ vi(·; si)

and ||bi − yi|| = λ,
∫ qi
qi
vi(x; si)− bi(x)dx ≥ −λ. This completes the proof.

In the following let I : R2 ⇒ R be given by I(a, b) = (min{a, b},max{a, b}), the open interval

between a and b, accounting as necessary for the cases in which a ≤ b and b ≤ a.

Lemma 20 (Discontinuous allocations). Let 〈(bi,t)ni=1〉∞t=1 be a sequence of bid functions converging

to (bi,?)
n
i=1. Suppose that limt↗∞ q

i(bi,t, b−i,t; z) 6= qi(bi,?, b−i,?; z), and that the limit exists. Then

bi,?
(
q′
)

= bi,?
(
q′′
)
, ∀q′, q′′ ∈ I

(
lim
t↗∞

qi (bi,t, b−i,t; z) , q
i (bi,?, b−i,?; z)

)
.
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Proof. For any agent j, define quantities

qj,t = qj (bj , b−j,t; z) , qj,? = qj (bj , b−j,?; z) , qj = lim
t↗∞

qj,t.

Assume without loss of generality that qi < qi,?; by market clearing there a nonempty set of agents

J such that for all j ∈ J , qj > qj,?. Let δ > 0 be such that limt↗∞ |qk,t − qk,?| > 2δ for all

k ∈ J ∪ {i}.

By market clearing, it must be that for all t sufficiently large and all j ∈ J ,

bj,t (qj,? + δ) ≥ bi,t (qi,? − δ) , and bj,t
(
qj − δ

)
≥ bi,t (qi + δ) .

In the limit, it must be that

lim
t↗∞

bj,t (qj,? + δ) ≥ bj,?
(
qj − δ

)
, and lim

t↗∞
bi,t (qi,? − δ) ≤ bi,? (qi + δ) .

It follows that

lim
t↗∞

bj,t (qj,? + δ) ≥ lim
t↗∞

bj,t
(
qj − δ

)
≥ lim

t↗∞
bi,t (qi + δ) ≥ lim

t↗∞
bi,t (qi,? − δ) . (3)

Further, it must be the case that limt↗∞ bj,t(qj,?+δ) ≤ limt↗∞ bi,t(qi,?−δ). Otherwise, monotonicity

and convergence together imply that

bj,?
(
qj,? + δ′

)
> bi,?

(
qi,? − δ′

)
∀δ′ ∈ (0, δ) .

This contradicts the definition of qj,? and qi,?. Then the inequalities in (3) hold with equality, and

lim
t↗∞

bi,t (qi,? − δ) = bi,? (qi + δ) .

Since this is true for all δ′ ∈ (0, δ), it follows that

lim
t↗∞

bi,t

(
lim

q′↗qi,?
q′
)

= bi,?

(
lim
q′↘qi

q′
)
.
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Then monotonicity and convergence imply that

bi,?
(
q′
)

= bi,?
(
q′′
)
, ∀q′, q′′ ∈ I

(
lim
t↗∞

qi (bi,t, b−i,t; z) , q
i (bi,?, b−i,?; z)

)
.

In what follows let uiz denote realized utility,

uiz

(
b̃i, b̃−i; si, z

)
=

∫ qi(b̃i,b̃−i;z)

0
vi (x; si) dx− τ

(
qi
(
b̃i, b̃−i; z

)
; b̃i, b̃−i, z

)
,

ui
(
b̃i, b̃−i; si

)
= Ez

[
uiz

(
b̃i, b̃−i; si, z

)]
.

Showing that an inequality holds for uiz for all z is sufficient to show that it holds for ui, and in

turn if this holds for all b̃−i the inequality will hold for interim utility U i.

Lemma 21 (Utility dominance in limit). Let 〈(bj,t)j 6=i〉∞t=1 be bid functions for agent i’s opponents,

converging to b−i,? = (bj,?)j 6=i. Then there is a continuous function h : R+ → R+, h(0) = 0, such

that for any y ∈ Y and all λ > 0,

lim
t↗∞

ui
(
[y + λ] ∧ vi (·; si) , b−i,t; si

)
≥ ui (y, b−i,?; si)− h (λ) .

Proof. To establish this result it is sufficient to prove the above inequality with respect to uiz for

any z. Let yλ = [y + λ] ∧ vi(·; si). Note that

lim
t↗∞

uiz

(
yλ, b−i,t; si, z

)
= lim

t↗∞

∫ qi(yλ,b−i,t;z)

0
vi (x; si) dx− τ

(
qi
(
yλ, b−i,t; z

)
; yλ, b−i,t, z

)
= lim

t↗∞

∫ qi(y,b−i,?;z)

0
vi (x; si) dx− τ

(
qi (y, b−i,?; z) ; y, b−i,?, z

)
+

∫ qi(yλ,b−i,t;z)

qi(y,b−i,?;z)
vi (x; si) dx−

[
τ
(
qi
(
yλ, b−i,t; z

)
; yλ, b−i,t, z

)
− τ

(
qi (y, b−i,?; z) ; y, b−i,?, z

)]
.

Let qλi,t = qi(yλ, b−i,t; z) and qi,? = qi(y, b−i,?; z). It will suffice to show that there is a continuous
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h : R+ → R+, h(0) = 0, such that

lim
t↗∞

[
τ
(
qλi,t; y

λ, b−i,t, z
)
− τ (qi,?; y, b−i,?, z)

]
−
∫ qλi,t

qi,?

vi (x; si) dx ≤ h (λ) . (4)

Since b−i,t → b−i,?, uniform continuity of transfers in opponent demand implies that for any q,

t(q; yλ, b−i,t; z) → t(q; yλ, b−i,?; z). Furthermore, ||yλ −
[
(y ∧ vi(·; si)) + λ

]
|| ≤ Qλ. Since y ∧

vi(·; si) ≤ y, monotonicity and uniform continuity of transfers in own bid imply that there is a

continuous hb : R+ → R+, hb(0) = 0, such that for any q,

lim
t↗∞

τ
(
q; yλ, b−i,t, z

)
≤ τ (q; y, b−i,?, z) + hb (λ) . (5)

Inequality (5) transforms the left-hand side of (4) into

lim
t↗∞

[
τ
(
qλi,t; y

λ, b−i,t, z
)
− τ (qi,?; y, b−i,?, z)

]
−
∫ qλi,t

qi,?

vi (x; si) dx

≤ hb (λ) + lim
t↗∞

τ
(
qλi,t; y

λ, b−i,t, z
)
− τ

(
qi,?; y

λ, b−i,t, z
)
−
∫ qλi,t

qi,?

vi (x; si) dx

≤ hb (λ)− lim
t↗∞

∫ qλi,t

qi,?

vi (x; si)− yλ (x) dx.

Since limλ′↘0 h
b(λ′) = 0, all that remains to establish the existence of the desired h is to show

lim
t↗∞

∫ qλi,t

qi,?

vi (x; si)− yλ (x) dx ≥ 0. (6)

Since yλ ≤ vi(·; si) by construction, if qi,? ≤ limt↗∞ q
λ
i,t inequality (6) is trivially satisfied.

Therefore assume that qλi ≡ limt↗∞ q
λ
i,t < qi,?. Recall that b−i,t → b−i,?. Then for bidder i’s

quantity to be higher under y against b−i,? than in the limit under yλ against b−i,t, it must be that

yλ(q) ≤ y(q) for all q ∈ (qλi , qi,?). By construction this is only possible when y ≥ vi(q; si) for all

such q, and hence yλ(q) = vi(q; si) for all such q. Then limt↗∞
∫ qλi,t
qi,?

vi(x; si) − yλ(x)dx = 0. In

either case inequality (4) is satisfied.

Lemma 22 (Limit surplus splitting). The divisible-good auction model satisfies Condition 5.

Proof. Suppose that there is a sequence of strategies 〈(βk,t)nk=1〉∞t=1 converging to the feasible strat-
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egy profile (β?,k)nk=1 such that there is an agent i with

Pr si

(
lim
t↗∞

U i
(
βi,t (si) , β

−i,t; si
)
> U i

(
βi,? (si) , β

−i,?; si
))

> 0.

Then there is a set Si, Pr(si ∈ Si) > 0, and for each si ∈ Si a set S−i(si), Pr(s−i ∈ S−i(si)) > 0,

such that for all si ∈ Si and s−i ∈ S−i(si),

lim
t↗∞

ui
(
βi,t (si) , β

−i,t (s−i) ; si
)
> ui

(
βi,? (si) , β

−i,? (s−i) ; si
)
.

Then for these same s = (si, s−i),

lim
t↗∞

Ez
[
qi
(
βt (s) ; z

)]
> Ez

[
qi (β?; z)

]
.

It follows that

Pr

(
lim
t↗∞

qi
(
βt (s) ; z

)
> qi (β? (s) ; z)

)
> 0.

Lemma 20 establishes that for any si ∈ Si, βi,?(si) is constant on intervals on which quantity

does not converge, hence ϕi,?(·; si) is discontinuous at this bid level. Since ϕi,?(·; si) is a monotone

function on a compact domain, it has at most countably-many discontinuities, so at least one such

quantity interval is realized with positive probability (otherwise bidder i’s utility is almost surely

converging). Considering such positive-probability intervals, there is a subset of signals Ŝi ⊆ Si

such that these positive-probability intervals intersect, and it is without loss of generality to assume

that this subset has positive measure; otherwise, the interval [0, Q̄] can be covered by uncountably-

many disjoint sets of positive measure, a contradiction. Lastly, market clearing implies that agent

i’s quantity loss is some other agent’s quantity gain, and since there are only a finite number of

agents it is again without loss of generality to assume that in all cases at least some of the discrete

gain goes to agent j 6= i. Then let Ŝi ⊆ Si be a positive-probability set such that there are

qi,`, qi,r ∈ [0, Q̄] such that for all si ∈ Ŝi,

Pr s−i,z

(
qi
(
βi,? (si) , β

−i,? (s−i) ; z
)
≤ qi,` < qi,r

≤ lim
t↗∞

qi
(
βi,t (si) , β

−i,t (s−i) ; z
))

> 0.
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For si ∈ Ŝi, let Ŝ−i(si) be given by

Ŝ−i (si) =

{
(s−i, z) : qi

(
βi,? (si) , β

−i,? (s−i) ; z
)
≤ qi,`

< qi,r ≤ lim
t↗∞

qi
(
βi,t (si) , β

−i,t (s−i) ; z
)}

.

Lemma 20 implies that βi,?(si) is constant on (qi,`, qi,r) for all si ∈ Ŝi. Additionally, this bid must

equal to the bid placed by any agent who, at the limit, receives agent i’s sacrificed quantity. Then

if si, s
′
i ∈ Ŝi are such that βi,?(si) 6= βi,?(s′i) on (qi,`, qi,r), it must be that Ŝ−i(si) ∩ Ŝ−i(s′i) = ∅.

From this and the fact that Pr(s−i ∈ Ŝ−i(si)) > 0, it follows that there is a bid level p and a

positive-probability set S̃i ⊆ Ŝi of agent i’s signal realizations such that for all si, s
′
i ∈ S̃i and

q, q′ ∈ (qi,`, qi,r), [
βi,? (si)

]
(q) = p =

[
βi,?

(
s′i
)] (

q′
)
.

Let S be defined as

S =

{
(s, z) : qi

(
βi,? (si) , β

−i,? (s−i) ; z
)
≤ qi,`

< qi,r ≤ lim
t↗∞

qi
(
βi,t (si) , β

−i,t (s−i) ; z
)
,

and
[
βi,? (si)

]
(q) =

[
βi,? (si)

] (
q′
)
∀q, q′ ∈ (qi,`, qi,r) ,

and lim
t↗∞

qj
(
βj,t (sj) , β

−j,t (s−j) ; z
)
< qj

(
βj,? (sj) , β

−j,? (s−j) ; z
)}

.

Then there is an agent j, quantities qj,`, qj,r ∈ [0, Q̄] with qj,` < qj,r, and a set Ŝ ⊆ S with

Pr((s, z) ∈ Ŝ) > 0 such that for all (s, z) ∈ Ŝ,

lim
t↗∞

qj
(
βj,t (sj) , β

−j,t (s−j) ; z
)
≤ qj,` < qj,r ≤ qj

(
βj,? (sj) , β

−j,? (s−j) ; z
)

and
[
βj,? (sj)

]
(q) = p =

[
βj,?

(
s′j
)] (

q′
)
∀q, q′ ∈ (qj,`, qj,r) .

Fix sj and define an alternative bid b
j,t
λ by

b
λ
j,t =

[[
βj,? (sj) ∨ βj,t (sj)

]
+ λ

]
∧ vj (·; sj) .

Define dt = ||βj,t(sj) − βj,?(sj)||. Since the divisible-good model with standard transfers satisfies
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Condition 3, for all opponent signal realizations s−j and random realizations z,

ujz

(
b
λ
j,t, β

−j,t (s−j) ; sj , z
)
≥ ujz

(
βj,t (sj) , β

−j,t (s−j) ; sj , z
)
− g

(
dt + λQ̄; sj

)
.

Since the right-hand residual can be made arbitrarily small by letting λ be small and t be large, it

will suffice to show that with positive probability the above inequality is strict, even without the

residual term.

Let (sj , s−j , z) ∈ Ŝ. Since vj(q; ·) is strictly increasing for all q, it is without loss to assume that

[βj,?(sj)](qj,r) < vj(qj,r; sj). Since standard transfers are bounded above by bids, it follows that

there is δ > 0 such that

lim
t↗∞

ujz
(
βj,t (sj) , β

−j,t (s−j) ; sj , z
)
< ujz

(
βj,? (sj) , β

−j,t (s−j) ; sj , z
)
− 2δ. (7)

Furthermore, for λ sufficiently small and t sufficiently large, [βj,?(sj)](qj,r) < b
λ
j,t(qj,r) < vj(qj,r; sj),

hence

lim
t↗∞

qj
(
b
λ
j,t, β

−j,t (s−j) ; z
)
≥ qj

(
βj,? (sj) , β

−j,? (s−j) ; z
)
≡ qj,? ≥ qj,r.

Uniform continuity of standard transfers in own and opponents’ bids implies that for λ sufficiently

small,

lim
t↗∞

τ
(
q; b

λ
j,t, β

−j,t (s−j) , z
)
− τ

(
q;βj,? (sj) , β

−j,? (s−j) , z
)
< δ.

Since b
λ
j,t ≥ βj,t(sj) is bounded above by marginal value vj(·; sj),

lim
t↗∞

ujz

(
b
λ
j,t, β

−j,t (s−j) ; sj , z
)

≥ lim
t↗∞

ujz
(
βj,? (sj) , β

−j,? (s−j) ; sj , z
)

−
[
τ
(
qj,?; b

λ
j,t, β

−j,t (s−j) , z
)
− τ

(
qj,?;β

j,? (sj) , β
−j,t (s−j) , z

)]
+

∫ qj
(
b
λ
j,t,β

−j,t(s−j);z
)

qj,?

vj (x; sj)− bλj,t (x) dx ≥ ujz
(
βj,? (sj) , β

−j,? (s−j) ; sj , z
)
− δ. (8)
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Putting together (7) and (8) gives

lim
t↗∞

ujz

(
b
λ
j,t, β

−j,t (s−j) ; sj , z
)
> lim

t↗∞
ujz
(
βj,t (sj) , β

−j,t (s−j) ; sj , z
)

+ δ.

Since this δ improvement can be realized with positive probability while costs can be made arbi-

trarily small, it follows that

lim
t↗∞

uj
(
b
λ
j,t, β

−j,t (s−j) ; sj

)
> lim

t↗∞
uj
(
βj,t (sj) , β

−j,t (s−j) ; sj
)
.

Lemma 23 (Divisible-good type insensitivity). Divisible-good auctions with standard transfers

satisfy Condition 8.

Proof. Let bi ∈ Ai(si), and for λ > 0 consider an alternative bid function bλi = [vi(·; si)− λ]+ ∧ bi.

Then bλi ∈ Ai(si), and bλi ≤ bi. Consider any opponent bid profile b−i = (bj)j 6=i. Since standard

transfers are monotone in own bid, for any q and z

τ
(
q; bλi , b−i, z

)
≤ τ (q; bi, b−i, z) .

Then if uiz(b
λ
i , b−i; si, z) < uiz(bi, b−i; si, z), it must be that qλ

i
≡ qi(bλi , b−i; z) < qi(bi, b−i; z) ≡ qi.

Write

uiz (bi, b−i; si, z) = uiz

(
bλi , b−i; si, z

)
+
[
τ
(
qλ; bλi , b−i, z

)
− τ (qi; bi, b−i, z)

]
+

∫ qi

qλ
i

vi (x; si) dx

≤ uiz
(
bλ, b−i; si, z

)
+

∫ qi

qλ
i

vi (x; si)− p (bi, b−i; z) dx. (9)

By market clearing, it must be that bλi (qλ
i
) ≤ p(bi, b−i; z). Bid montonicity and inequality (9) imply

uiz (bi, b−i; si, z) ≤ uiz
(
bλi , b−i; si, z

)
+

∫ qi

qλ
i

vi (x; si)− bλi (x) dx. (10)

Furthermore, market clearing implies that for q ∈ (qλ
i
, qi), b

λ
i (q) < bi(q). Then for all such q,
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bλi (q) = vi(q; si). Then (9) becomes

uiz (bi, b−i; si, z) ≤ uiz
(
bλi , b−i; si, z

)
+
(
qi − qλi

)
λ ≤ uiz

(
bλi , b−i; si, z

)
+Qλ.

It follows that against any opponent strategy profile β−i = (βj)j 6=i,

U i
(
bλi , β

−i; si

)
≥ U i

(
bi, β

−i; si
)
−Qλ.

Proof of Corollary 4 (main text). That quantity is utility-relevant follows from the logic employed

in the proof of Lemma 22, which establishes Condition 5. In particular, if quantity is not converging

for a positive-measure set of signal realizations, it is without loss to assume that agent i loses

quantity in the limit. Then for some realizations of agent signals, the lost quantity intervals

overlap, and Lemma 20 then implies that for some of these type realizations the lost quantity

intervals overlap at exactly the same bid level. Then because marginal values are strictly monotone

in signal, a positive-measure subset of these signal realizations is such that agent i’s utility is not

converging, implying that quantity is utility-relevant.

Convergence of bidding strategies implies that if π(y?(s), z) 6= limt↗∞ π(yt(s); z), then q(y?(s); z) 6=

limt↗∞ q(y
t(s); z). Since q is utility-relevant, seller revenue π is utility-relevant.

B.3 Discretized model

Lemma 24 (Satisfaction of Condition 7). The ε-discretized model Mε = (n, u,Xε, Aε, F ) set forth

in Section 4 satisfies Condition 7.

Proof. Closure and the lattice structure of Ai,ε(si) follow immediately from its definition.

Let b ∈ Ai(si), and let bε : Xε
D → Xε

R be given by

bε (q) =

⌊
b (q) + ε2

ε2

⌋
ε2.

Since b ≤ vi(·; si), bε ≤ vi(·; si) + ε2 and bε ∈ Ai,ε(si). Then bεt ↘ b with bεt ≥ a for all t.

Lastly, let 〈bt〉∞t=1 be a sequence of functions, bt ∈ Ai,εt(si) for all t, and assume that bt → b?.
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Since each bt is monotone, b? is monotone and b? ≤ vi(·; si) almost everywhere. Then b? is L1

equivalent to a function b̂? ∈ Ai(si), and 〈bt〉∞t=0 converges in Ai(si).

Lemma 25 (Satisfaction of Condition 6). The ε-discretized model Mε admits a monotone pure

strategy Bayesian Nash equilibrium.

Proof. By Proposition 4.4 of Reny (2011) it is sufficient to show that bidder i’s utility function is

weakly quasisupermodular and satisfies weak single crossing.

Weak single crossing is straightforward. Let b′i ≥ bi; then qi(b′i, ·; ·) ≥ qi(bi, ·; ·), and

U i
(
b′i, β

−i; si
)
≥ U i

(
bi, β

−i; si
)

⇐⇒ E

[∫ qi(b′i,b−i;z)

qi(bi,b−i;z)
vi (x; si) dx

]
≥ E

[
τ
(
qi
(
b′i, b−i; z

)
; b′i, b−i, z

)
− τ

(
qi (bi, b−i; z) ; bi, b−i, z

)]
.

The left-hand side is strictly increasing in si while the right-hand side is constant in si, and weak

single crossing is established.

Weak quasisupermodularity derives from the observation that, given any bids bi and b′i and any

realization z, {qi(bi, b−i; z), qi(b′i, b−i; z)} = {qi(bi ∨ b′i, b−i; z), qi(bi ∧ b′i, b−i; z}, and the presumed

submodularity of the standard transfer rule.
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