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Abstract

It is known that the bipartite demand problem has an easy approxi-
mation which generates at least half the maximum profits for the selling
side of the market. We demonstrate via an example that this approxima-
tion is tight, and that the results of the approximation algorithm cannot
necessarily be improved upon any subsequent algorithm which takes the
approximation as given.

1 Introduction

Consider the pricing problem faced by a monopolist who produces heterogeneous
goods at 0 cost, where consumer demand is unitary over pairs of the goods.
That is, a consumer might be willing to pay $5 for an apple and an orange
together, but is willing to pay $0 for any other combination; another consumer
is willing to pay $3 for an apple and a pear together, and $0 for any other bundle.
Demands are assumed to be commonly known. In a market of this kind, the
optimal product-pricing scheme is well-defined (if nonunique), however for large
numbers of products and agents it may be computationally intractable, hence
the ability to approximate optimal pricing is desirable.

Balcan and Blum [1] give a simple algorithm which is guaranteed to obtain
at least half of the maximum profits: optimally price only one “half” of the
market, and price all other products at 0. Since the priced half of the market is
unconnected, there are no computational concerns regarding forward effects on
the demand network.

In the given example, we can view the sides of the network as {(Apple), (Orange,Pear)};
the optimal price for the “Apple” side of the market is pApple = 3 (for a profit of
6), the optimal prices for the other side of the market are pOrange = 5, pPear = 3
(for a profit of 8). In this setting, the total social gains (8) equal the total profit
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Figure 1: the fruit-demand network

available from optimal pricing, which in turn equals the total profit available
from pricing one side of the market.

Khandekar et al. [2] demonstrate that the o(2) pricing bound — the one-
sided pricing algorithm guarantees at least half the total surplus — is sharp;
we contribute a simple example of the sharpness of this bound. In this same
example, we demonstrate that not only is the bound sharp, but it cannot be
improved by any algorithm which follows one-sided pricing by optimal re-pricing
of the unpriced side of the market so long as prices are constrained to be positive.
The case where prices are possibly negative is left undiscussed.

2 Sharpness

Let k ∈ N++ represent the number of consumers in an economy. Let V k =
{vroot} ∪ [∪ki=1{v1/i}] be a set of products and Ek = {(vroot, v1/i) : 1 ≤ i ≤
k} be the set of pairwise demands; together, these form the graph Gj(V,E).
We associate the set E with the k consumers, where consumer i has demand
represented by the edge (vroot, v1/i). Let consumer i have value 1/i for this

bundle.1 Denote the economy described by these features by Ek.

Given k, choose two such economies Ek1 and Ek2 ; let E(k) = Ek1 ∪ Ek2 — where
the union of two economies is the union over their vertices and edges, where
each is labeled according to the original economy from which it is drawn —
together with an additional consumer i = (0, 0) who has value 1 for the bundle
(vroot,1, vroot,2).2 The graph of this economy is G(k), pictured in Figure 2.

1We can restrict this model to integer valuations by multiplying by k!; for ease of notation
we will retain the convention of fractional valuations.

2There is a fairly broad range of values for the “connector” agent (vroot,1, v1/k,1) such that
this example will still hold. In particular, so long as he exists and has value less than 2, our
argument requires no modification.
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Figure 2: the market network G, with k = 4.

2.1 Profit baseline

A perfectly-discriminating monopolist could extract all rents from consumers;
its surplus would then be

πdisc = 1 + 2

k∑
i=1

1/i.

Since the monopolist is not able to price-discriminate, it must price vertices
(goods) individually so as to maximize the profit captured from consumer will-
ingness to pay. We claim that the monopolist maximizes profits by setting
prices

p1/i,j = 1/i− 1/k, proot,j = 1/k =⇒ πmon = 2/k + 2

k∑
i=1

1/i.

Note that raising the price of any “leaf” good will cause the demanding consumer
to drop out of the market, reducing profits. Additional rents are available from
the connecting consumer, but raising the price of either of his goods entails
other consumers dropping out of the market3, in such a fashion as to reduce total
profits: raising the root price by ε eliminates all of that market’s leaf consumers,
unless accompanied by a similar reduction in price for all of the leaf goods, for
nonpositive profits. Since prices are bounded below by 0, this profit differential
is occasionally strictly negative; hence the monopolist is profit-maximizing at
these prices.

3Note that if we allow prices to be negative the monopolist can capture all consumer surplus
in this market.
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2.2 Approximation

Notice that G(k) is bipartite: there is a natural partition of vertices (products)
such that there is no edge between any two vertices in a particular element of
the partition; that is, there is no consumer who demands more than one good
in any element of the partition. This partition is demonstrated in Figure 3, and
is given by

P(k) =
{
{vroot,1} ∪

[
∪ki=1

{
v1/i,2

}]
, {vroot,2} ∪

[
∪ki=1

{
v1/i,1

}]}
.
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Figure 3: a partition of the market into two internally-disconnected submarkets,
P(k)1 in red and P(k)2 in blue.

Now consider the profit available from pricing only one side (i.e., one partitional
element) of G(k); by symmetry of G(k), we may constrain ourselves to pricing
the vertices V ′ = V 1 \ {vroot,1}. It is clear that we may extract full surplus
from all agents i ≤ k with j = 1: their vertices in V ′ have degree 1. Hence
profit of

∑k
i=1 1/i is obtained from these agents. As for the agents in Ek2 and

the connector agent, all surplus to be extracted from them must come from the
price assigned to vroot,2.

By construction, the profit available from agents in E2 from pricing p = vroot,2
is

p ·#({1/i ≥ p}) = (1/p′)p′ = 1, p′ ∈ N ∩ [1, k].

There is additional surplus of p available from the connecting agent when p ≤ 1,
hence the profit-maximizing price of vroot,2 is p = 1, yielding a total profit of 2
on this partitional element.

The one-sided pricing algorithm uses these prices as the final prices for the
entire graph. The total profit obtained in the larger market from the one-sided
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approximation is therefore

πappx = 2 +

k∑
i=1

1/i.

The ratio of optimal profit to one-sided optimal profit is given by

2 +
∑k

i=1 1/i

2/k + 2
∑k

i=1 1/i
=

1

2
+ (2− 1/k)

(
2/k +

k∑
i=1

1/i

)−1
.

Since k may be chosen arbitrarily large and the sum
∑k

i=1 1/i diverges, the
limit of the right-hand term is 0. It follows that the bound o(2) is sharp for the
Balcan-Blum pricing algorithm.

3 Conditional unimprovability

The question arises: fixing this approximation, is there a simple algorithm which
obtains a non-trivial amount of the remaining surplus? Our example demon-
strates that capturing any remaining surplus can be impossible.

In particular, following the approximation above there is no additional surplus
to be extracted from consumers in Ek1 : their valuation is being fully extracted
at one of the goods they desire. Turning to Ek2 , we recall that the price of
vroot,2 is 1; this price is (weakly) above the valuation of any bundle on this side
of the market, hence positive prices cannot affect either intensive or extensive
market activity. Applying a pricing algorithm to the unpriced side of the market
therefore results in zero additional profits. It follows that the o(2) bound is tight
even when a positive-repricing scheme is applied.

4 Negative pricing

Allowing negative prices would not only allow for full surplus extraction in the
non-approximation case, but it would also allow for full surplus extraction in
the repricing case. Although negative prices are never optimal when pricing
the first side of the market — there are no knock-on effects to be mitigated
with negative pricing, hence such prices are only lossy — they can affect a
consumer’s willingness to enter if used in the two-stage repricing scheme. In
this case, by applying negative prices to the unpriced side of the market such
that all formerly-outpriced consumers are just willing to purchase, full surplus
may be obtained by the monopolist.
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It is not clear how general this “subsidy principle” is; intuitively, it seems clear
that full extraction through negative repricing is an edge case, and in our exam-
ple this is a result of the relative sparseness of demand. More work is necessary
to determine the bounds on approximation profits if the monopolist can fol-
low the Balcan-Blum approximation with subsidies for those priced out of the
market.

5 Discussion

We have provided a constructive example to prove the sharpness not only of the
Balcan-Blum pricing approximation on bipartite demand networks, but also of
any algorithm which takes the output of this approximation as fixed and at-
tempts to improve monopoly profits by positive pricing. It is assumed that this
construction generalizes to higher dimensions, as does Balcan-Blum’s approxi-
mation when demand is over bundles with more than two goods.

Although the construction is surprisingly general — the key features are that
the sum of agent valuations diverges while a single price can only extract a
finite amount of surplus4 — the statement should be taken with a grain of salt:
intuitively, the likelihood that valuations over homogeneous goods take this form
seems fairly low. In particular, any assumption that values must be distributed,
say, normally will break this example. This does not devalue the result, but it
should provide context as to the relevance of a worst-case analysis. Moreover, in
a sense the introduction of a connecting agent results in a pathological demand
graph; this should be interpreted more as a weakness of the bipartite approach
than of our particular example.
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